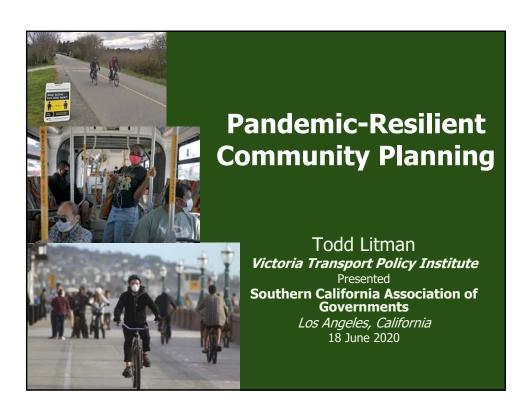
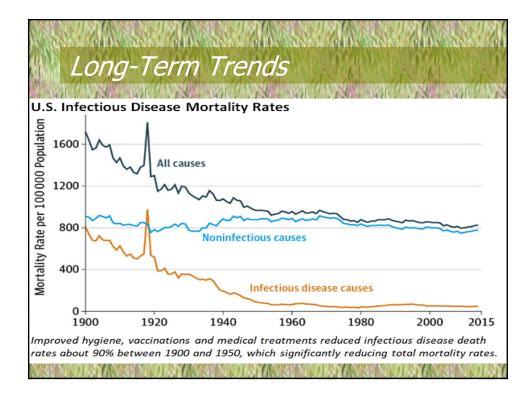
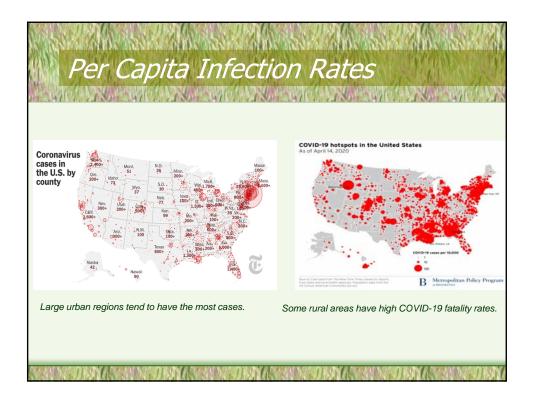


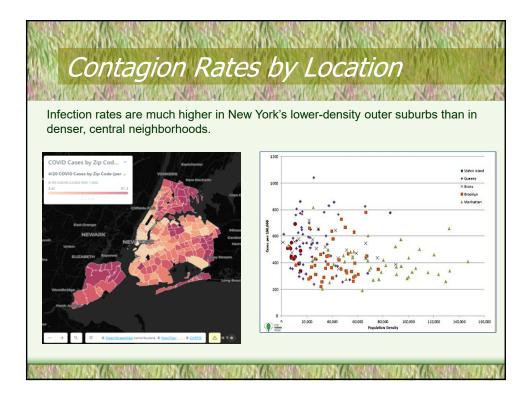
SOUTHERN CALIFORNIA ASSOCIATION OF GOVERNMENTS **REGIONAL PLANNING WORKING GROUPS**

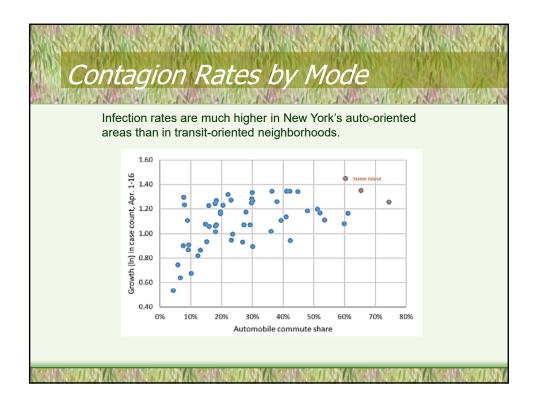
Joint Working Group Meeting Public Health, Sustainable Communities & Climate Adaptation

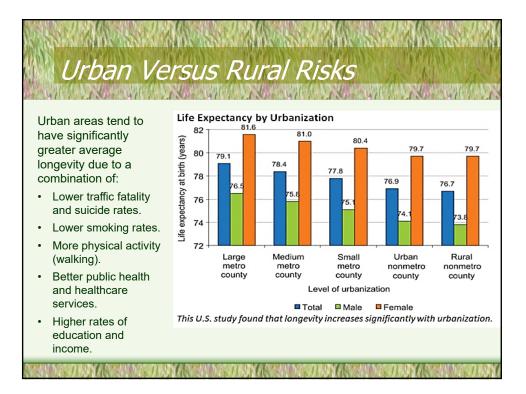

June 18, 2020 1:30 p.m. – 3:30 p.m.

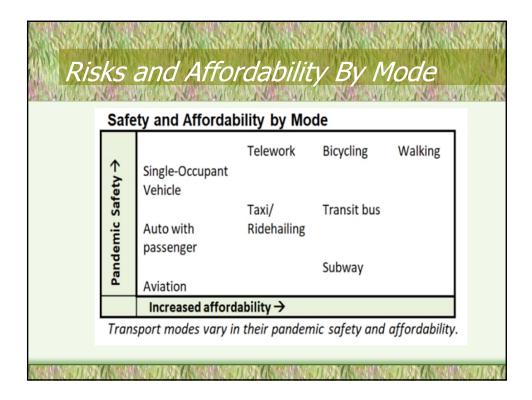

Due to COVID-19, please join via web conferencing: To join the meeting: <u>https://scag.zoom.us/j/91993302013</u> Dial-In: +1-669-900-6833 Meeting ID: 919 9330 2013

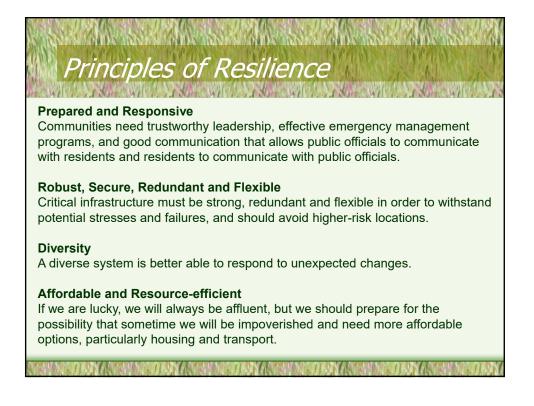

AGENDA


- 1. WELCOME, SELF INTRODUCTIONS Courtney Aguirre, SCAG
- 2. **PANDEMIC-RESILIENT COMMUNITY PLANNING** *Todd Litman, Victoria Transport Policy Institute*
- 3. CONNECT SOCAL UPDATE Jason Greenspan, SCAG
- 4. SUSTAINABLE COMMUNITIES PROGRAM UPDATE Sarah Dominguez, SCAG
- 5. CLIMATE ADAPTATION FRAMEWORK A FOCUS ON EXTREME HEAT David Von Stroh, Cambridge Systematics

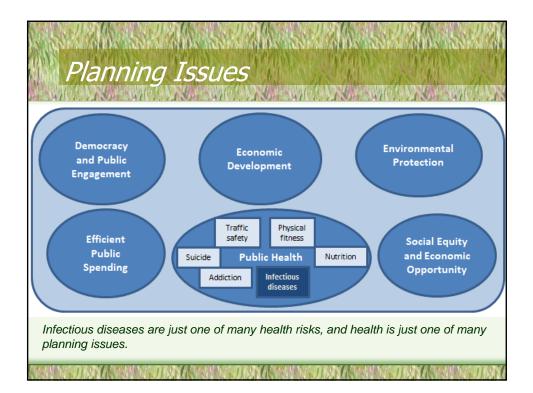

SCAG, in accordance with the Americans with Disabilities Act, is committed to providing special accommodations to those who are interested in participating in the working group meeting. SCAG is also committed to helping those with limited proficiency in the English language by providing translation services at the workshop in accordance with Title VI of the Civil Rights Act. We ask that you provide your request for special accommodations or translation services at least 72 hours prior to the meeting so that SCAG has sufficient time to make arrangements. For any inquiries, please contact Courtney Aguirre, Program Manager, at <u>aguirre@scag.ca.gov</u> or by calling (213) 236-1990.







Isolation I	Problems and Solutions
Problem	Community Solutions
Confusion and fear	Good communication, particularly for vulnerable and isolated people.
Inadequate access to essential goods	Provide shopping opportunities and delivery services.
Healthcare needs	New service models, such as on-line consultations and pharmacy deliveries.
Crowding and discomfort	Adequate housing, with private outdoor space (balconies, decks, yards)
Mental stress	Community support and mental health services. Design for "sociable distancing."
Physical inactivity	Opportunities for outdoor activity. "Open streets" with restricted vehicle traffic.
Domestic conflicts	Adequate housing. Community support. Domestic violence response.
Reduced household income	Emergency funding. Community support. Affordability.
Reduced business income	Emergency funding. Support for new business models, such as delivery services.
Homelessness	Eliminate homelessness, as described in the following section.


Transp	ort Risks and Solutions
Risks	Solutions
Long-distance travel	Limit mobility and require quarantines, particularly from higher-risk areas.
Private vehicle travel	Avoid carrying passengers, clean touch surfaces, encourage hygiene.
Taxi and ridehailing	Limit crowding, clean touch surfaces, encourage hygiene, protect operators.
Public transit vehicles	Limit crowding, clean touch surfaces, encourage hygiene, protect operators.
Terminals	Limit crowding, clean touch surfaces, encourage hygiene, protect employees.
Walking and bicycling	Encourage distancing. Limit automobile traffic and open streets to active modes.
Automobile dependency	Create neighborhoods with convenient walking and bicycling access.

Sj	Decial Risks an Urban	nd Solutions Rural Areas
Special Risks	 Crowded buildings and sidewalks Elevators Public transit Homelessness and inadequate housing 	 Vulnerable (old, poor, chronic illness, etc.) populations Limited public health resources Physical and social isolation Poor access to medical facilities Inadequate housing Poverty and limited employment options
Solutions	 Targeted cleaning Promote hygiene Promote social distancing Improve walking and bicycling Eliminate homelessness and improve housing quality 	 Improve public health services Targeted outreach to isolated households Improve access to essential services High speed internet access and e-services Financial assistance to poor and unemployed Improve housing quality

	Resilience Planni	IN AT TALENDALINESS, AND A THE OF A LINEAU WASH AND A MILLY AT TALENDALINESS, AND A MILLY
	Households	Communities
Pandemic Risks	 Resources to sanitize personal items, vehicles and homes, plus face masks and gloves. A home with adequate space, home offices, natural light and ventilation, and private outdoor spaces such as a balcony, deck or yard to provide comfort for extended isolation. Good communications resources, including telephone, internet service and computers for socializing, e-commerce and telework. Fitness program, including in-home exercise and nearby walking and bicycling. 	 Good public health programs, particularly infectious disease control and smoking reduction. Healthcare services able to handle surges. Shared vehicles (taxis, ridehailing and public transit) density restrictions, cleaning and sanitizing, plus employee and passenger hygiene. Minimal homelessness or inadequate housing. Programs to address mental illness, substance abuse, domestic violence, and vulnerable resident supports. Expanded pedestrian facilities to prevent crowding, traffic calming and road space reallocation.
Reduces All Risks	 Household emergency plan, including emergency contact information. Emergency supplies, including first aid equipment, flashlights, mobile phone and portable radio backup power, and food for at least two weeks. A home in a relatively safe location (out of floodplains and wildfire interface) built to withstand local risks such as earthquakes, hurricanes, plus extreme heat and cold. Comfortable shoes for walking and a sturdy bicycle for riding. Housing in a compact, walkable neighborhood where essential services and activities are accessible without a car. Ways to reduce household expenditures if income declines. Positive relationships with neighbors. 	 Effective emergency management with trustworthy leadership, reliable communications networks and critical supplies. Robust internet and telecommunications networks, e-government, e-commerce, and delivery services. Restrictions on development in high-risk areas such as floodplains and wildfire interface. Zoning codes and house retrofit programs that ensure homes can withstand risks such as earthquakes and are energy efficient. Compact, walkable and bikeable neighborhoods where most essential services and activities can be accessed without using an automobile. Sufficient affordable housing to serve demand. Community cohesion, so most residents have positive relationships with their neighbors. Unemployment insurance and support for lower-income households.

Analysis So	cope
A CONTRACTOR OF THE OWNER OF THE	
Risks	Analysis Question
 Infectious diseases pandemics 	How do pandemics compare with other risks? What factors affect these risks, and how can they be reduced?
1. Disaster risks	How do disasters compare with other risks? How can communities minimize disaster deaths, injuries and damages?
1. Health risks	How do various health risk compare? What factors affect community health and longevity, and how can they be maximized?
 Economic, social and environmental risks 	How does health compare with other community goals? What trade-offs exist between these goals? What win-win strategies provide multiple benefits?
A SENT DESYAGE SENT DESYA	A STATISTICS AND DEVICES A DEVICE AND DEVICES AND DEVICES AND DEVICES AND DEVICES AND DEVICES AND DEVICES AND D

			家の
Benefit Analys	sis	ALL ST	
			(ARRITER)
Policy Solutions	Reduce Contagion	Public Health	Sustainability
Limit public gatherings and activities	\checkmark		
Targeted cleaning and hygiene	\checkmark	\checkmark	
Improve public health and emergency services	\checkmark	\checkmark	
Walking and bicycling improvements	\checkmark	\checkmark	\checkmark
Encourage public transport use		\checkmark	\checkmark
Reduce private auto travel		\checkmark	\checkmark
Reduce homelessness	\checkmark	\checkmark	\checkmark
Affordable infill housing	\checkmark	\checkmark	\checkmark
Traffic safety programs		\checkmark	
Assist low-income households	\checkmark	\checkmark	\checkmark
SALAR THE MANAGEMENT AND A SUCCESSION	THE CASE OF THE	TAUSED. JASY	AN SECTION AND

- An efficient and equitable transportation system must be diverse, in order to serve diverse travel demands.
- Walking, bicycling and public transit provide diverse benefits.
- Many of these benefits tend to be overlooked or undervalued in conventional planning.

Often overlooked benefits:

- · Parking cost savings.
- Consumer savings and affordability (savings to lower-income households).
- Improved economic opportunity for disadvantaged groups.
- Public health and safety (due to less driving and more active travel).
- Infrastructure cost savings.
- Community cohesion (due to more walking) and reduced local crime.
- Reduced impervious surface which reduces stormwater costs and heat island effects.

www.vtpi.org Info@vtpi.org 250-508-5150

Pandemic-Resilient Community Planning

Practical Ways to Help Communities Prepare for, Respond to, and Recover from Pandemics and Other Economic, Social and Environmental Shocks

11 June 2020

By Todd Litman Victoria Transport Policy Institute

Resilient communities can efficiently absorb economic, social and environmental shocks, including disasters such as pandemics.

Abstract

Resilience refers to a system's ability to efficiently absorb shocks. This report investigates ways that communities can increase their resilience to pandemics and other sudden economic, social or environmental risks. It compares COVID-19 with other health risks, examines various problems caused by pandemic-control interventions, and recommends specific ways that communities can better prepare for, respond to, and recover from pandemics and other shocks.

Pandemic-control travel restrictions, isolation requirements and job losses cause various domestic, social and economic problems, including physical and emotional stresses, and financial losses. Risks vary by location: urban residents have more exposure to infectious disease while rural residents are more likely to die if infected. All shared vehicle travel, including private automobiles carrying passengers, can spread disease. For most households, the safest place to live during a pandemic is an affordable home with ground-floor access in a walkable urban neighborhood where residents have low-risk and affordable mobility options. To improve resilience, communities need effective emergency response, contagion control, safe methods for delivering essential goods and services, adequate housing for all residents, physical and mental support for isolated people, and affordability. Infectious disease risks justify stronger efforts to eliminate homelessness.

Todd Litman © 2020

You are welcome and encouraged to copy, distribute, share and excerpt this document and its ideas, provided the author is given attribution. Please send your corrections, comments and suggestions for improvement.

Table of Contents

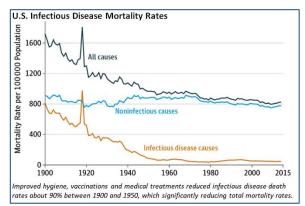
Executive Summary	3
Introduction	6
Principles of Resilience	7
Comparing COVID-19 with Other Health Risks	8
Problems of Isolation and Physical Distancing	10
Homelessness Risks and Solutions	11
Comparing Urban and Rural Risks	12
Transport Risks and Solutions	16
Affordability	19
Pandemic-Resilient Community Planning	20
Comprehensive Solutions	22
Conclusions	24
References	25

Preface – Live Long and Prosper in an Unpredictable World

Imagine that in 2019 a trustworthy source predicted that a pandemic would soon severely limit vehicle travel, require your household to isolate at home for months, and possibly reduce your income for extended periods of time. How would you prepare? You would probably collect emergency supplies such as hand sanitizers, facemasks and food supplies, enhance the comfort of your home with more natural light and ventilation, improve your communication links and ability to work on-line with higher speed internet services, and find ways to reduce household expenditures if needed.

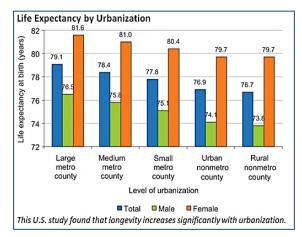
Similarly, imagine that you are a city planner or mayor who received a similar prediction. How would you prepare your community? You would probably enhance your emergency management and public health programs with improved communications networks and emergency supplies, ensure that healthcare services can accommodate demand surges, implement transportation policies that can prioritize travel and provide access to essential goods and services, eliminate homelessness, and improve affordable housing and transportation options to serve residents with reduced incomes.

However, disasters are unpredictable. Major pandemics are rare and highly variable events, making them difficult to forecast. It would be a mistake to prepare for just one risk – a major pandemic – and ignore other disasters. For these reasons, this report approaches this issue broadly; it considers how lessons from the COVID-19 pandemic can be generalized to help individual households and communities prepare for diverse health, environmental and economic shocks, including but not limited to infectious disease risks. This can help people and communities live long and prosper despite life's uncertainties.


Executive Summary

This report explores a pertinent and interesting question. How can we best prepare for the "slings and arrows of outrageous fortune," or to use modern terminology, how can we plan communities that are resilient to economic, social and environmental shocks, including pandemics and other disasters?

According to popular culture, the best disaster survival plan is to isolate on a private island or rural property. For some people, preparing a secluded bunker with sufficient emergency supplies ("prepping") is a hobby or business. However, for most households this is an ineffective and unrealistic solution. Although an affluent and healthy individual with practical skills and anti-social tendencies may be happy and healthy in rural isolation, most people have responsibilities and dependencies, including work, caregiving, and personal needs that require access to services and activities, and many people find such isolation boring.


Analysis described in this report indicates that most people are best off during a disaster living in a walkable urban neighborhood with convenient access to common services and activities, and social connections that provide security and support. This is good news overall, because it indicates that policies to increase disaster resilience also tend to help achieve other community goals including affordability, economic opportunity and environmental protection.

The COVID-19 pandemic is a significant risk. If uncontrolled, it could kill hundreds of millions of people, with great social and economic costs. Fortunately, prevention seems to be relatively effective, greatly reducing mortalities. Although infectious diseases were once a dominant cause of death, improved hygiene, vaccinations, healthcare, and other public health interventions have greatly reduced their mortality rates, as illustrated at right. Pandemics now kill fewer people, and cause far fewer potential years of lost life, than many other health risks, including cardiovascular diseases, cancers and accidents.

If COVID-19 follows the pattern of previous pandemics, controlling it will require many months of restricted travel and physical interaction, creating various health, social and economic problems. To improve resilience, communities need effective responses including contagion control, safe access to and delivery of essential goods and services, adequate housing, physical and mental support for isolated people, and affordability.

A key conclusion of this research is that pandemics do not justify abandoning cities. Although city residents are more exposed to infectious diseases, rural residents are more likely to die if infected, and urban living provides large health and safety benefits making cities significantly safer and healthier overall, as illustrated to the right. Many people assume that contagion risk increases with *density* (the number of people per unit of land), but that is not necessarily true; the risk is actually associated with *crowding* (the number of people within an enclosed space, such as a vehicle or house). Most infection risks are associated with specific activities – long-distance travel, worksites, stores and social gatherings – that are similar in cities, suburbs and rural areas.

To reduce the stresses of isolation, homes need adequate space, light and ventilation. Houses with groundfloor access have the least contagion exposure. Multi-family housing with shared entranceways, indoor hallways and elevators have additional risks, but these can be reduced with appropriate design, frequent cleaning and sanitizing, appropriate hygiene, and physical distancing (<u>Lewyn 2020</u>). Homelessness increases contagion risks, so eliminating homelessness increases resilience. Such efforts, while costly, and therefore requiring state/provincial and federal funding, provide many long-term benefits.

Travel modes vary in their risks and affordability, as illustrated at right. All shared vehicles, including airplanes, trains, buses taxis, ridehailing, and private automobiles carrying passengers, can spread contagions. Walking and bicycling tend to have the least contagion risk, can serve people who for any reason cannot drive, provide exercise and are affordable, so improving walking and bicycling conditions tends to increase resilience. Improving walking and bicycling tends to increase health and resilience.

		Telework	Bicycling	Walking		
Ŷ	Single-Occupant					
Safety →	Vehicle					
Saf		Taxi/	Transit bus			
i,	Auto with	Ridehailing				
Pandemic	passenger					
and			Subway			
•	Aviation					
	Increased affordability →					

The table below summarizes special urban and rural pandemic risks and solutions. For equity sake, extra consideration should be given to helping physically, economically and socially disadvantaged groups.

	Urban	Rural Areas
Special Risks	 Crowded buildings and sidewalks Elevators Public transit Homelessness and inadequate 	 Vulnerable (old, poor, chronic illness, etc.) populations Limited public health resources Physical and social isolation Poor access to medical facilities Inadequate housing
Solutions	 housing Targeted cleaning Promote hygiene Promote social distancing Improve walking and bicycling Eliminate homelessness and improve housing quality 	 Poverty and limited employment options Improve public health services Targeted outreach to isolated households Improve access to essential services High speed internet access and e-services Financial assistance to poor and unemployed Improve housing quality

Special Pandemic Risks and Solutions

Urban and rural areas have special pandemic risks that require special solutions.

Pandemics are just one of many risks that communities face, and generally not the most important, so it would be inefficient to implement infectious disease reduction strategies that increase other health, economic, environmental problems, for example, by reducing physical activity which increases cardiovascular disease, or increasing vehicle travel and therefore traffic casualties and pollution emissions. To increase resilience, households and communities should be prepared with emergency management programs, develop robust and flexible infrastructure, and favor affordable and resource-efficient housing and transportation options. Many of these strategies provide many economic, social and environmental benefits, in addition to reducing disaster risks.

Analysis Scope

Planning analysis can vary in scope:

- 1. Infectious disease risks only.
- 2. All disaster risks.
- 3. All health impacts.
- 4. All economic, social and environmental planning goals.

More comprehensive analysis helps identify *win-win solutions* that achieve multiple goals, in addition to reducing infectious disease or disaster risks.

The table below provides checklists of ways that households and communities can increase their resilience to pandemics and other economic, social and environmental risks.

Resilience Planning Checklists

		For Households	For Communities				
s	•	Resources to sanitize personal items, vehicles and homes, plus face masks and gloves.	• Good public health programs, particularly infectious disease control and smoking reduction.				
Risk	•	A home with adequate space, home offices,	Healthcare ser	rvices able to handle surges.			
Reduces Pandemic Risks		natural light and ventilation, and private outdoor spaces such as a balcony, deck or yard to provide comfort for extended isolation.		e density restrictions, cleaning and semployee and passenger hygiene.			
s Pa	١.		Minimal home	elessness or inadequate housing.			
Reduce	 Good communications resources, including telephone, internet service and computers for socializing, e-commerce and telework. 	-	ddress mental illness, substance abuse, ence, and vulnerable resident supports.				
	•	Fitness program, including in-home exercise and nearby walking and bicycling.		lestrian facilities to prevent crowding, and road space reallocation.			
	•	Household emergency plan, including emergency contact information.		anagement with trustworthy leadership, nunications and critical supplies.			
	•	Emergency supplies, including first aid equipment, flashlights, mobile phone and		et and telecommunications networks, e- e-commerce, and delivery services.			
		portable radio backup power, and food for at least two weeks.		n development in high-risk areas such as d wildfire interface.			
Reduces All Risks	•	A home in a relatively safe location (out of floodplains and wildfire interface) built to withstand local risks such as earthquakes, hurricanes, plus extreme heat and cold.	homes can wit	and house retrofit programs that ensure thstand local risks such as earthquakes, weather, and are energy efficient.			
Reduc	•	Comfortable shoes for walking and a sturdy bicycle for riding.	most essentia	kable and bikeable neighborhoods where I services and activities can be accessed an automobile.			
	•	Housing in a compact, walkable and bikeable neighborhood where essential services and		rdable housing to serve demand.			
		activities are accessible without a car.		phesion, so most residents have positive			
	•	Ways to reduce household expenditures if	•	with their neighbors.			
		income declines.	• •	nt insurance and support for lower-			
	•	Positive relationships with neighbors.	income house	holds.			

Good planning by households and communities can increase their resilience to pandemics and other risks.

Human intelligence allows us to learn from previous experiences and generalize those lessons to solve new problems. The COVID-19 pandemic is a good learning experience. The bad news: we face diverse and unpredictable risks, with no simple solutions. You can run, but you cannot hide. The good news: cooperative actions can greatly reduce deaths, and most people and communities are highly resilient. Given appropriate support, we can be healthy and happy despite economic, social and environmental shocks. This report should be of interest to policy makers, practitioners and the general public. Although focusing on North American conditions, many of the findings are applicable in other world regions.

Introduction

COVID-19 is a serious threat; if uncontrolled it could kill hundreds of millions of people around the world. Fortunately, strong public health interventions are reducing its spread and preventing it from overwhelming healthcare systems, greatly reducing deaths. Thanks public health professionals!

However, we can do better. Unnecessary delays and inadequate preparation reduced the effectiveness of these responses, and communities face many practical problems in preventing infections and addressing the pandemic's social and economic impacts. During a disaster people often ask, "Why were we not better prepared?" Every disaster is unique, so it would be a mistake to prepare for identical future pandemics; we need to identify general principles that can help communities respond effectively to diverse risks. Planners use the term "resilience" to describe a system's ability to absorb shocks, that is, sudden economic, social or environmental changes. Many communities have goals to increase their resilience (100 Resilient Cities).

This pandemic created an interrelated set of problems that include illness and deaths, healthcare system stress, travel restrictions, stay-at-home and isolation requirements, fear and confusion, mental and physical stresses, plus lost income to individuals and businesses which threaten local, national and global economic development. Although there is extensive literature on emergency management and community resilience planning, most existing publications focus on environmental threats such as hurricanes, earthquakes and wildfires; pandemics receive little consideration. Pandemics differ from most other disasters because they threaten people but not infrastructure, have long durations and huge economic impacts, as summarized below, so their mitigation is primarily concerned with protecting people and providing economic security, with little need for infrastructure protection and repair.

_				Healthcare	Evacuation	Economic	Infrast.
Туре	Scale	Duration	Warning	Needs	Needs	Costs	Damages
Earthquake	Large	Short	None	Large	Varies	Large	Large
Extreme weather ¹	Varies	Moderate	Short	Small	Moderate	Moderate	Moderate
Tsunami	Large	Short	Short	Moderate	Local	Large	Large
War/civil unrest	Varies	Short	Short	Moderate	Large	Moderate	Large
Wildfire	Large	Long	Moderate	Small	Moderate	Large	Large
Major utility failures ²	Large	Moderate	Short	None	None	Large	Large
Chemical spill/fire	Small	Varies	Short	Large	Local	Large	Large
Pandemic	Very Large	Very Long	Long	Very Large	None	Very Large	None

Exhibit 1 Disaster Impacts

Pandemics are one of many types of disasters that should be considered in emergency response planning.

1. Extreme weather includes hurricanes, tornados, blizzards, ice storms, and extreme cold and heat.

2. Major, long-term utility failures could result from technical failures, extreme weather, terrorist attacks or solar flares.

This report investigates these issues. It compares COVID-19 with other health risks; examines various impacts on people and economic activity; identifies specific problems such as homelessness and unaffordability; compares urban and rural risks; and recommends specific ways that communities can better prepare for, respond to, and recover from pandemics and other shocks. This report focuses on actions that can be implemented by individual households, community organizations, local and regional government. It highlights "win-win" strategies that increase resilience while helping to achieve other community and household goals. It should be of interest to anybody involved in emergency response or community resilience planning, or who wants guidance preparing their own household for future disasters.

Principles of Resilience

The future is unpredictable so smart planning prepares for possible unexpected changes, what economists call *shocks*, or as my grandmother recommended, we should "hope for the best but prepare for the worst." This would be easy if we faced just one possible shock, but there is a large range of possible threats that individuals and communities may face. Below are general principles for resilience planning.

Prepared and Responsive

Prepared and responsive means that communities have trustworthy leadership, effective emergency management programs, and good communication that allows public officials to communicate with residents and residents to communicate with public officials.

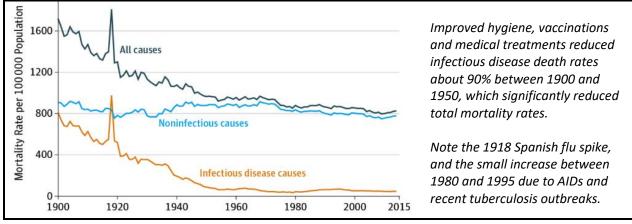
Robust, Secure, Redundant and Flexible

Critical infrastructure must be strong, redundant and flexible in order to withstand potential stresses and failures, and should avoid higher-risk locations. For example, earthquakes cause much less damage and casualties in areas with strong building codes, and extreme weather is less likely to cause power failures where utility lines are underground. Similarly, for security sake, homes and communities should avoid vulnerable floodplains, shorelines and forests susceptible to wildfires, risks that are increasing with climate change.

Diversity

A diverse system is better able to respond to unexpected changes. For example, people who normally travel by automobile should value having alternatives, such as good walking, bicycling and public transport in their community, for possible future situations in which they cannot or should not drive, because of a vehicle failure, medical problem or lost income, or because a disaster makes roads impassable or fuel unavailable. Drivers also benefit from non-auto modes that reduce their chauffeuring burdens. Similarly, households benefit from having diverse home heating and cooking options, food supplies, and employment opportunities.

Affordable and Resource-efficient


If we are lucky, we will always be affluent, but we should prepare for the possibility that sometime we will be impoverished and need more affordable options. Since housing and transportation are most household's two largest expenses, affordable housing and transportation are particularly important for resilience planning.

These principles can be applied to many types of planning decisions. For example, this suggests that to increase resilience, households should choose homes, and communities should design neighborhoods, that are in lower-risk locations, with efficient and redundant public infrastructure, and build multi-modal transportation systems that provide convenient access to important services and activities without requiring an automobile. These principles also suggest that communities should ensure that affordable housing and transportation options are available, so any household, including those with low incomes, physical impairments or other special needs can find suitable affordable homes in a walkable neighborhood.

These principles increase a community's resilience to many risks including pandemics and other disasters, and individual households' resilience to shocks such as lost income and physical disabilities. Although a pandemic does not damage physical infrastructure like natural disasters, it does stress household infrastructure and constrain travel activity, and its financial impacts will force many households to need more affordable housing and transport options.

Comparing COVID-19 with Other Health Risks

Infectious disease epidemics, including smallpox, typhus, plague, cholera, polio, and measles, were once common and deadly (<u>Healthline 2016</u>). Fortunately, better hygiene, vaccines, and improved medical treatments greatly reduced these risks, as illustrated below. Globalization increases contagion dispersion but also the speed of responses, so even highly contagious and deadly diseases can be controlled. As a result, our infectious disease risks are far smaller than our grandparents'.

Exhibit 2 U.S. Infectious Disease Mortality Rates (<u>Hansen, et al. 2016</u>)

COVID-19 is dangerous due to its high transmissibility (it travels easily to uninfected people) and mortality rates (1-10% of infected people die; <u>CEBM 2020</u>; <u>Varity, et al. 2020</u>). Its long-term risks will depend on its immunity patterns (the degree infected people become immune to reinfections; <u>Wu 2020</u>), the ease of creating vaccines, and mutation rates (how quickly new strains develop). If it follows previous flu pandemic patterns, risks will be acute for several months, and decline as prevention and treatment methods improve, vaccines are developed, and more people become immune.

Due to successful public health interventions, pandemics are now a relatively small health risk overall. COVID-19 is predicted to kill 200,000 to 2.2 million Americans over an 18-month period (<u>Fritze 2020</u>; <u>Kristof</u> 2020), causing a 5-40% increase over the 2.8 million typical annual deaths. Assuming that major pandemics occur twice a century, they average 4,000-44,000 annual deaths, as indicated below.

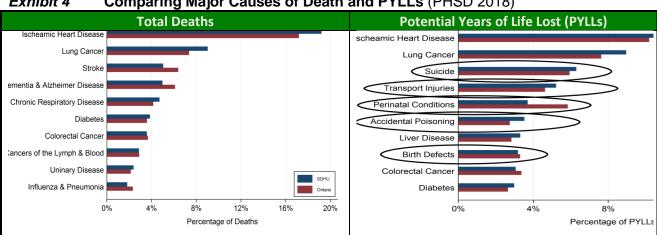

EXhibit 3 U.S. Leading Causes of Deaths $(\underline{CDC \ 2018})$						
Disease	2017 Deaths					
Heart disease	647,457					
Cancer	599,108					
Lower respiratory disease, Influenza and pneumonia	215,873					
Accidents (unintentional injuries)	169,936					
Strokes	146,383					
Alzheimer's disease	121,404					
Diabetes	83,564					
Nephritis, nephrotic syndrome and nephrosis	50,633					
Intentional self-harm (suicide)	47,173					
Estimated pandemics deaths	150,000-250,000					

Exhibit 3	U.S. Leading Causes of Deaths (CDC 2018)
	0.0. Ecaling Causes of Deatins (000 2010

Assuming major pandemics occur twice a century, they represent a relatively small portion of average annual deaths.

This suggests that long-term health policies should treat pandemics as one of many health risks.

Because COVID-19 mostly kills older people, it causes smaller reductions in Potential Years of Life Lost (PYLLs), which accounts for the average age when people die, and so gives greater weight to risks to younger people. The figures below compare total death and PYLLs rates for the SDHU Region in Ontario. Risks that kill younger people, including suicides, transport injuries, perinatal conditions, poisonings and birth defects, are relatively important when measured by PYLLs, making their prevention a more important public health priority. Measured this way, diseases such as influenza and respiratory diseases rank relatively low compared with suicides, accidents and birth defects.

Exhibit 4 Comparing Major Causes of Death and PYLLs (PHSD 2018)

Cardiovascular diseases, cancers, dementia and respiratory diseases are major causes of death, but because they kill younger people, suicides, accidents and birth defects (circled) cause more potential years of life lost.

The table below compares COVID-19 with other major mortality risks, assuming a 30% infection rate (30% of people contract the disease in 2020) and 1% mortality rate. During the next year it would be the largest cause of death for people over 60, but even in this age group would cause a minority of all deaths, and for younger groups would cause fewer deaths than traffic crashes, drug overdoses, homicides or suicides.

Exhibit 5 Comparing Coronavirus with Other Mortality Risks (New York Times 2020)

son paring concernan					/
Here is where coronavirus deaths would rank in	the U.S., assuming	Age 10 to 19		Age 20 to 29	
an overall infection rate of 30% and fatality rate	of 0 5% over the	1 Guns 2 Car crashes	3,145	1 Drug overdoses 2 Guns	11,477
an overall infection rate of 30 % and fatality rate	or 0.5 % over the	3 Suicide	2,870	3 Car crashes	8,929
next year:		4 Cancer	1,532	4 Suicide	3,542
		5 Coronavirus (estimate)	800	5 Coronavirus (estimate)	2,300
How Coronavirus Deaths Could Compare With Other Majo	r Killere	5 Coronarias (Eschiace)	000	5 coronarias (escinare)	2,000
now coronavirus beaus could compare with other majo	Milers	Age 30 to 39		Age 40 to 49	
CAUSE OF DEATH	U.S. DEATHS	1 Drug overdoses	17,303	1 Cancer	19,395
1 Heart disease	655,381	2 Guns	6,806	2 Heart disease	18,276
		3 Canoar	6,540	3 Drug overdoses	14,303
2 Cancer	599,274	4 Car crashes	6,365	4 Coronavirus (estimate)	7,100
3 Coronavirus (estimate)	480,000	7 Coronavirus (estimate)	2,800	5 Liver disease and cirrhosis	5,916
4 Alzheimer's, dementia and brain degeneration	267,311				
5 Emphysema and COPD	154,603	Age 50 to 59		Age 60 to 69	
		1 Cancer	70,996	1 Cancer	147,935
6 Stroke	147,810	2 Heart disease	54,498	2 Heart disease	102,449
7 Diabetes	84,946	3 Coronavirus (estimate)	32,000	3 Coronavirus (estimate)	97,000
8 Drug overdoses	67.367	4 Drug overdoses	14,655	4 Emphysema and COPD	27,768
0		5 Liver disease and cirrhosis	14,642	5 Diabetes	19,122
9 Pneumonia/flu	59,690				
10 Liver disease and cirrhosis	55,918	Age 70 to 79 1 Cancer	172,805	Age 80+	335.740
11 Renal failure	50,404	2 Coronavirus (estimate)	1/2,005	2 Alzheimer's, dementia and brain	220,976
12 Car crashes	42,114	3 Heart disease	135,243	 Authermens, bementa and brain degeneration 	220,976
		4 Emphysema and COPD	49,299	3 Coronavirus (estimate)	192,000
13 Septicemia	40,718	 5 Alzheimer's, dementia and brain 	37.219	4 Cancer	177,706
14 Guns	39,201	degeneration	07,210	5 Stroke	\$6,390

COVID-19 could become the largest cause of death for older people, but for most people it is likely to cause fewer deaths than traffic crashes, drug overdoses, homicides or suicides.

This analysis indicates that pandemics present very large potential health risk. If uncontrolled, COVID-19 could kill up to 10% of affected community members, potentially causing up to 500 million deaths. Fortunately, public health interventions can reduce this risk by more than 99%. Although the interventions are economically costly, they are smaller than the potential damages of uncontrolled COVID-19. The table below compares best- and worst-case pandemic futures.

Exhibit 6 Best and Worst Pandemic Futures

Best	Worst	
Infection rates are quickly controlled	Out-of-control infection rates overwhelm healthcare systems	
Fewer than 200,000 U.S. deaths	More than two million U.S. deaths	
Pandemic declines during spring 2020	Pandemic continues unabated	
Effective vaccine is quickly developed	Rapid mutations make vaccines ineffective	
Life and economy returns to normal by 2021	Life and economy are continually disrupted	

With good management and luck, life and economic activity will soon return to normal.

Problems of Physical Distancing and Isolation

Pandemic control involves restrictions on travel, commercial and social activities, plus isolation and sometimes quarantine. The table below summarizes resulting problems and potential community solutions.

Problem	Community Solutions		
Confusion and fear	Good communication, particularly for vulnerable and isolated people.		
Inadequate access to essential goods	Provide shopping opportunities and delivery services.		
Healthcare needs	New service models, such as on-line consultations and pharmacy deliveries.		
Crowding and discomfort	Adequate housing, with private outdoor space (balconies, decks, yards)		
Mental stress	Community support and mental health services. Design for "sociable distancing."		
Physical inactivity	Opportunities for outdoor activity. "Open streets" with restricted vehicle traffic.		
Domestic conflicts	Adequate housing. Community support. Domestic violence response.		
Reduced household income	Emergency funding. Community support. Affordability.		
Reduced business income	Emergency funding. Support for new business models, such as delivery services.		
Homelessness	Eliminate homelessness, as described in the following section.		

Exhibit 7 Isolation Problems and Community Solutions

Restrictions on travel, commercial and social interactions can create various problems.

Some of these solutions require technologies such as high-speed internet and video conferencing, plus delivery services, to help people to stay informed and entertained, access essential goods and services, work, and maintain social connections. Homes should have sufficient space and comfort features, natural light and air, and private outdoor spaces such as balconies, porches, decks and yards. Communities can be designed for "sociable distancing," for example, houses with windows oriented to the street, and front porches, plus wide sidewalks and recreational paths (Mehaffy 2020). These features are particularly important for families with children and people with disabilities.

Homelessness Risks and Solutions

People experiencing homelessness or inadequate housing, and the organizations that serve them, face special challenges from contagious diseases (Brasuell 2020). Homeless people tend to be vulnerable to infections due to a combination of daily stress, poor nutrition and chronic diseases, and living in crowded conditions that lack basic hygiene resources such as sinks, clean toilets, and opportunities to bath and clean clothes (Woodyard 2020). Homelessness services providers are also vulnerable to infectious illnesses and so may be unable to work during outbreaks.

Public health officials advise people exposed to or infected by contagious diseases to shelter in place. Such quarantines are difficult enough for people with stable homes and reliable incomes; they are virtually impossible for people who are homeless or living in inadequate housing (Fuller 2010), such as housing that is crowded, or lacks sufficient heating or cooling (DeParle 2020). If homeless people become infected, they will need to stay in hospitals, using scarce beds, adding stresses and costs to overburdened public health services. Everybody benefits by minimizing homeless residents' infection risks.

Many communities have programs to reduce homelessness, but a pandemic makes these efforts far more urgent. Homelessness service providers are reorganizing their services to reduce contagion risks, ensure physical distancing and improve hygiene (Woodyard 2020) Some communities are using RVs, tents or underutilized hotels to provide quarantine housing for homeless people who are infected but don't need hospitalization (Canales 2020). To be successful these efforts require coordinated food, healthcare and mental health services, with plans to transition occupants into stable long-term housing when the pandemic ends.

This is difficult. Homeless people have diverse abilities and needs. Although some are homeless temporarily, due to a short-term financial or domestic crisis, and simply need affordable housing, a portion is chronically homeless due to severe mental illness and substance abuse problems and so need housing with integrated medical, social and economic support. Such programs are costly but can be justified economically by their long-term health, social and economic benefits.

Homelessness problems are particularly severe in large central cities (DHUD 2018). Since homeless people tend to migrate from their home communities to those cities, called "social drift," regional, state/provincial and national governments should bear most of these costs (Lederbogen, Haddad, Meyer-Lindenberg 2013).

Resources for Addressing Homelessness Pandemic Risks

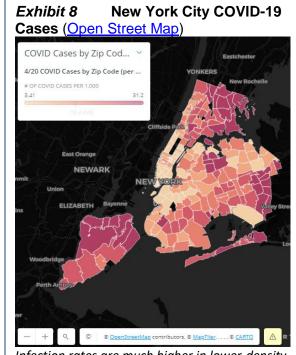
CDC (2020), Interim Guidance for Homeless Shelters, Center for Disease Control.

Homelessness Hub (2020), Infectious Diseases.

Jen Monnier (2020), "Coronavirus Poses Unique Threat to U.S. Homeless Population," Scientific American, 11 March.

NAEH (2020), Coronavirus and Homelessness, National Alliance to End Homelessness.

NCEH (2020), <u>What Homeless Folks Should Know about Coronavirus (COVID-19)</u>, National Coalition for the Homeless.


NHCHC (2020), Coronavirus Resources, National Health Care for the Homeless Council.

Comparing Urban and Rural Risks

Many people assume that infectious disease risks make cities dangerous (<u>Dawid 2020</u>; <u>Rosenthal 2020</u>), but this is generally untrue (<u>Fox 2020</u>; <u>Smith 2020</u>; <u>Steuteville 2020</u>). Although, all else being equal, infection exposure can increase with density,¹ other factors are more significant, so dense cities with good public health programs have lower infection and death rates than sprawled areas with poor programs (<u>Li,</u> <u>Richmond and Roehner 2018</u>).

High COVID-19 infection rates in large cities such as Chicago, New York and Seattle reflect their global connections – they are major travel hubs and centers of trade, tourism and migration – more than density. Some dense cities such as Hong Kong, Singapore and San Francisco, and highly urbanized countries, such as Japan, South Korea and Taiwan, minimized COVID-19 deaths (Kahn 2020; Leonard 2020; Lindeke 2020; Normile 2020), and many suburban areas, such as New Rochelle near New York, and Kirkland near Seattle, have higher infection rates than nearby central cities (Bliss and Capps 2020; Dobkin and Diaz 2020; Keil, Connolly and Ali 2020). Although COVID-19 took longer to reach rural areas in the U.S., within two months, two thirds of rural counties had at least one case, and some have high infection rates (Healy, et al. 2020).

For this analysis, it is important to distinguish between *density* (people per acre) and *crowding* (the number of people within an enclosed space, such as a vehicle or house). Contagion risks results from crowding, not density. There is no reason to believe that city worksites, stores, and healthcare facilities are more contagious than in suburban and rural areas. The table below summarizes risk factors and solutions.

Infection rates are much higher in lower-density outer suburbs than in central neighborhoods.

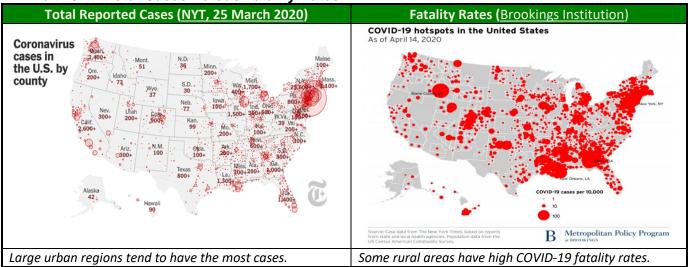
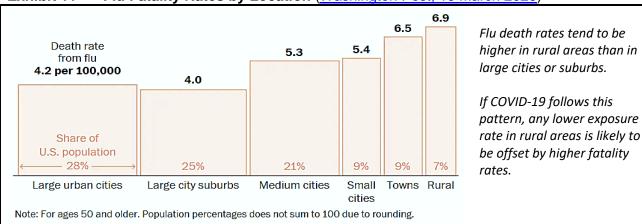
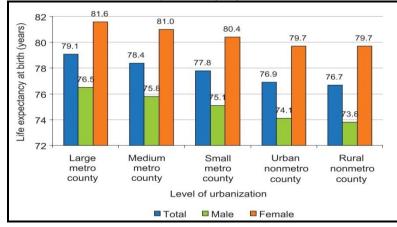

Risk Factors	Solutions – Responses
Long-distance travel	Limit mobility and require quarantines, particularly from higher-risk areas.
Crowded buildings	Limit crowding, clean touch surfaces, and encourage resident, employee and visitor hygiene.
Stores and restaurants	Limit crowding, use delivery services, clean touch surfaces, and encourage hygiene.
Shared vehicles	Limit crowding, clean touch surfaces, encourage hygiene, protect operators.
Sidewalks and paths	Reduce crowding and encourage distancing. Pedestrianize streets.
Social gatherings	Forbid or discourage social gatherings, clean touch surfaces, encourage hygiene.
Nursing homes and medical facilities	Develop comprehensive infection prevention, testing and control protocols, limit access by non-essential visitors, encourage hygiene, protect staff.
Homelessness	Provide housing for homeless residents and targeted services to vulnerable groups.

Exhibit 9 Contagion Risk Factors and Solutions

Infectious diseases present specific risks which can be reduced.


¹ Fan and Song (2009) found 28% higher infection-related mortality in central cities during 1979-2008, and <u>Chandra, et</u> al. (2013) found that during India's 1918–19 influenza epidemic, districts with more than 175 residents per square mile experienced 4.69% population loss compared with 3.72% losses in less dense areas.

For this analysis, it is also important to measure risk *per capita*. Large population states, such as New York, California, and Florida have more virus cases, as indicated on the left, but many lower density areas have high per capita death rates, as indicated on the right. Density is less a risk than factors such as long-distance travel (and therefore global connections), public health programs, demographics and lifestyle.



Larger and denser cities tend to have longer flu seasons, but less dense areas have greater spikes that can strain health care systems (<u>Dalziel, et al. 2018</u>). Rural residents tend to be more vulnerable to infectious diseases due to their demographics (they are older, poorer, and have more chronic diseases and higher smoking rates), limited public health systems, and poor healthcare access (<u>Keating and Karklis 2020</u>). Flu death rates are much higher in rural areas than in large cities and suburbs, as illustrated below. As pandemic expert Professor Eva Kassens-Noor explains, "Rural populations have less means to contract it [coronavirus], but rural populations have less means to treat it." (<u>Bliss and Capps 2020</u>).

Exhibit 11 Flu Fatality Rates by Location (Washington Post, 19 March 2020)

Urbanization tends to increase infectious disease risks but significantly reduces most major causes of death (cardiovascular and respiratory diseases, cancers and unintentional injuries), and so increase overall longevity (<u>Cosby, et al. 2019</u>; <u>Hamidi, et al. 2018</u>; <u>Sallis, et al. 2016</u>), as illustrated below.

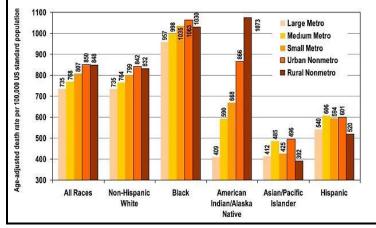


Exhibit 12 Life Expectancy by Urbanization, U.S., 2005–2009 (Singh and Siahpush 2014)

This U.S. study found that longevity increases significantly with urbanization for all demographic groups. Large metro residents live 2.4 more years than rural residents, on average. Urban-rural differences are even greater for poor and minority groups.

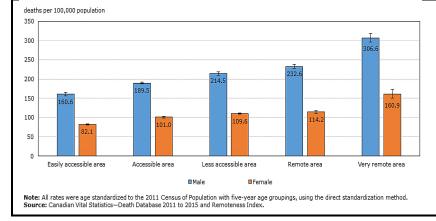

Rural residents have shorter lifespans due to higher rates of cardiovascular, respiratory and kidney diseases, unintentional injuries lung and colorectal cancer, suicide, diabetes, Alzheimer's disease and birth defects.

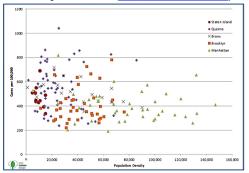
Exhibit 13 Age-Adjusted Death Rates, U.S., 1990–2009 (Singh and Siahpush 2014b)

This U.S. study found that mortality rates are lowest in large metro regions and tend to increase with rurality for most demographic groups. Urban-rural disparities are particularly large for poor and most minority groups, and increased in recent decades.

Rural residents have higher rates of cardiovascular and respiratory diseases, unintentional injuries, lung cancer, suicide, diabetes, pneumonia/influenza, cirrhosis, and Alzheimer's disease.

Exhibit 14 Preventable Mortality in Canada (Subedi, Greenberg and Roshanafshar 2019)

This Canadian study found that preventable mortality is lowest in easily accessible (i.e., urban) areas and increases with remoteness (i.e. rural).


These differences result from demographics (remote community residents tend to have lower incomes and less education), plus higher rates of cardiovascular disease, cancers, diabetes, accidents and suicides, plus less access to healthcare.

The figure to the right, from, *Mobilizing Against COVID-19 (by Staying Put)* (Winkelman 2020), published by Green Resilience, shows a negative relationship between neighborhood density and COVID-19 infection rates in New York City.

Health and safety risks vary by location. City residents tend to have greater risks from infectious diseases, high-rise fires and street crime, but rural residents face greater risks from chronic diseases, accidents (particularly traffic crashes) suicides, and some disasters (such as wildfires), plus less healthcare access and slower emergency response.

In addition to improved health and safety, there are other reasons to favor compact development (<u>Badger 2020</u>). Urban living tends to reduce per capita land consumption and vehicle travel, and increases accessibility, which provide various benefits, as summarized below.

Exhibit 15 COVID-19 Versus Density in NYC (Winkelman 2020)

New York's denser neighborhoods had lower infection rates than in low-density suburbs.

Exhibit 16 Compact Community Benefits (<u>Ewing and Hamidi 2015; Litman 2019</u>)

Economic	Social	Environmental
 10-30% <u>transport</u> cost savings Less time <u>driving and congested</u>. 	 Lower <u>traffic casualty rates</u>. Residents are <u>healthier</u> and <u>live longer</u>. 	 Requires less land for <u>roads and</u> <u>parking</u>, preserving <u>open space</u>.
 More productivity and innovation. <u>Public services</u> cost savings. 	 Greater <u>economic opportunity</u> for disadvantaged people. 	 <u>Energy savings and emission</u> <u>reductions</u>.

As a result, any additional contagion risk in cities should be balanced against the benefits of compact living. This is not to suggest that rural living is "bad" and everybody should move to cities; people should be free to live where they want. This analysis simply indicates that it would be misguided to move from a city to a rural area to reduce pandemic risks; that would reduce safety overall and endanger rural residents. Rather than abandon cities, resilient community planning would reduce risks so cities and rural areas become even safer and healthier overall (<u>Holland 2020</u>), as indicated in the table below.

Exhibit 17	Special Pandemic Risks and Solutions
------------	--------------------------------------

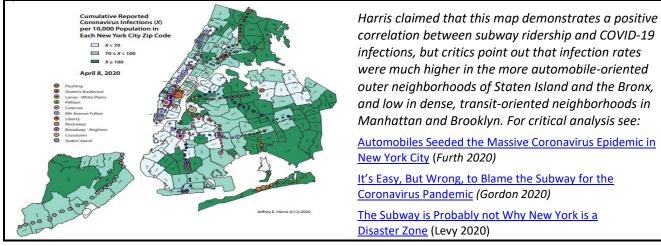
	Urban	Rural Areas
	 Crowded buildings and 	• Vulnerable (old, poor, chronically ill, etc.) populations
	sidewalks	 Limited public health resources
Special	Elevators	 Physical and social isolation
Risks	Public transit	 Poor access to medical facilities
	 Homelessness and inadequate 	 Inadequate housing
	housing	 Poverty and limited employment options
	 Targeted cleaning 	Improve public health services
	 Promote hygiene 	 Targeted outreach to isolated households
	 Promote physical distancing 	 Improve access to essential services
Solutions	 Improve walking and bicycling 	 High speed internet access and e-services
	Eliminate homelessness and	 Financial assistance to poor and unemployed
	improve housing quality	Improve housing quality

Urban and rural areas have special pandemic risks that require special solutions.

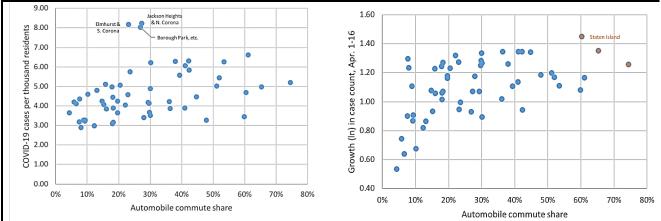
Transport Risks and Solutions

Both long-distance and local travel present contagion risks: long-distance travel can introduce diseases into a community and local travel can disperse it. Transport hubs and corridors, such as airports and highways, are often gateways to diseases. All shared vehicles present risks: buses, trains and airplanes can have crowded vehicles and stations, while automobiles used for taxis, ridehailing, or carrying family and friends have confined spaces and numerous touch services (handles, arm rests and seats). These risks are difficult to compare; for example, it is uncertain whether total contagion risk is lower if 1,000 non-drivers travel on 100 buses with 10 average passengers, 500 taxi/ridehail vehicles with a driver and two average passengers, or 1,000 private cars with a driver and one passenger, since each presents unique risks. The figure below compares my estimates of contagion risk and affordability of common travel modes.

	and and anoruability by mode				
		Telework	Bicycling	Walking	
↑	Single-Occupant Vehicle				
Pandemic Safety →		Taxi/	Transit bus		
c Sa	Auto with	Ridehailing			
emi	passenger				
and			Subway		
٩	Aviation				
	Increased affor	dability \rightarrow			


Exhibit 18 Safety and Affordability by Mode

Transport modes vary in their pandemic safety and affordability. Of course, actual impacts will vary depending on conditions. This suggests that to reduce risks travellers should minimize all types of shared vehicle travel. This can severely constrain the out-ofhome activities of non-drivers in automobiledependent areas. Commuters who don't drive may be unable to work, and adolescents lack independence. Even urgent rides, such as healthcare access, can be difficult and costly in sprawled areas where taxi and ridehailing services are limited and travel distances are long. Intercity vehicle travel may also be inconvenient, due to limited traveler services.


Public transport can present special risks. A paper by Jeffrey E. Harris, <u>*The Subways*</u>

<u>Seeded the Massive Coronavirus Epidemic in New York City</u>, claimed that subways where the major cause of COVID-19 dispersion in New York City, based on maps showing reported cases concentrated along subway lines, and because late-March ridership declines were followed by reductions in new cases, but critics point out that infection rates are actually higher in more automobile-oriented suburban areas than in transit-oriented areas, and many other contagion-control policies were implemented in late March which can explain the decline in new infections (Furth 2020; Gordon 2020; Grabar 2020; Levy 2020; Winkelman 2020).

Exhibit 19 New York City Infection Rates (Harris 2020)

Analysis by Salim Furth, <u>Automobiles Seeded the Massive Coronavirus Epidemic in New York City</u>, shows that neighborhood COVID-19 infection rates tend to decline with transit mode share and increase with automobile mode share, as illustrated below. He identifies various ways that motorists are likely to spread disease more than transit users: motorists tend to travel farther, visit more destinations, and reduce their vehicle trip-making less than transit users, and take fewer precautions because driving seems safer than transit travel. This explains the high infection rates in more automobile-oriented areas.

Aron Furth's study, <u>Automobiles Seeded the Massive Coronavirus Epidemic in New York City</u>, shows statistically strong positive correlations between automobile commute mode shares and both COVID-19 infection rates (left figure) and April 1-16 infection growth rates (right figure), plus strong negative correlations between both subway and other transit commute mode shares and infection rates.

Transit risks can be reduced by limiting crowding, appropriate cleaning and sanitizing, employee and passenger hygiene, operator protection (Fletcher, et al. 2014; Levy and Goldwyn 2020), and operational improvements that reduce delay (Transit Center 2020). Taxi, ridehailing and motorists carrying passengers can reduce risks by limiting crowding, cleaning, sanitizing and hygiene. Taxi and ridehailing companies can offer sick leave so drivers are less likely to work when they may be contagious. Delivery services reduce but do not eliminate risk since couriers handle many people's goods. Walking, bicycling and telework are generally the safest and most affordable travel modes, making walkable urban neighborhoods resilient, particularly if they are designed for minimal crowding and *sociable distancing* (Mehaffy 2020).

Exhibit 21 Transportation Risks and Solutions		
Risks	Solutions	
Long-distance travel	Limit mobility and require quarantines, particularly from higher-risk areas.	
Private vehicle travel	Avoid carrying passengers, clean touch surfaces, encourage hygiene.	
Taxi and ridehailing	Limit crowding, clean touch surfaces, encourage hygiene, protect operators.	
Public transit vehicles	Limit crowding, clean touch surfaces, encourage hygiene, protect operators.	
Terminals	Limit crowding, clean touch surfaces, encourage hygiene, protect employees.	
Walking and bicycling	Encourage distancing. Limit automobile traffic and open streets to active modes.	
Automobile dependency	Create neighborhoods with convenient walking and bicycling access.	

Exhibit 21 Transportation Risks and Solutions

Travel activities impose various risks which can be reduced.

Here are some current and long-term travel impacts.

- Pandemic restrictions on travel and business activities, and stay-at-home orders, have greatly reduced vehicle traffic and public transportation (<u>Heisler 2020</u>), which has reduced <u>traffic congestion</u>, <u>accidents</u> and air pollution (<u>Lunden and Thurlow 2020; <u>Sahagun 2020</u>).</u>
- <u>Telework</u> (telecommunications and delivery services that substitute for physical travel) was already growing, but is likely to accelerate as people and businesses gain experience during the pandemic.
- <u>Bicycling</u> is a safe and healthy travel option. The pandemic is <u>increasing bicycle travel</u>, and may justify more long-term <u>bicycling improvements</u>.
- Reduced vehicle traffic and increased need for physical distancing can justify <u>street space reallocation</u> to expand sidewalks and bike lanes, and create "open streets" where non-motorized modes share road space with low-speed motor vehicle traffic (Kostelec 2020; Lydon 2020).
- Emergency, service, freight and delivery vehicles may receive additional support and priority.
- Public transit may be stigmatized and criticized, leading to ridership losses and disinvestments. Advocates should respond with evidence of benefits (<u>Levy 2020</u>; <u>Litman 2018</u>; <u>TUMI 2020</u>; <u>UITP 2020</u>).

Will this pandemic cause people to abandon cities and public transit? Probably not. Perhaps the most relevant example is experience after the September 11th terrorist attack, and various public transit terrorist attacks (<u>Reuters 2017</u>). At the time, many people claimed that these events would end urbanization and public transit demand. Cities and transit agencies responded with increased security and public education. Both urbanization and transit ridership soon returned to previous growth levels. Although terrorist attacks lead some people to <u>dread</u> (i.e., have irrational fear) cities and transit travel, they are, in fact, generally safer and healthier overall than rural living and automobile travel (<u>Hamidi, et al 2018</u>; <u>Litman 2005</u>).

During a major pandemic it may be rational to restrict public transit travel, but over the long run, total deaths and illnesses are likely to increase if exaggerated pandemic fear leads to long-term shifts from cities to automobile-dependent suburbs, or from public transit to automobile travel (<u>Litman 2005</u>).

Resources for Reducing Transportation Pandemic Risks

APTA (2020), <u>The COVID-19 Pandemic Public Transportation Responds: Safeguarding Riders and Employees</u>, American Public Transportation Association (<u>www.apta.com</u>)

CNT (2020), <u>Urban Opportunity Agenda</u>, Center for Neighborhood Technology (<u>www.cnt.org</u>).

EU (2020), <u>COVID-19: Guidelines on the progressive restoration of transport services and connectivity</u>, European Union.

ITE (2020), COVID-19 Resources, Institute of Transportation Engineers (www.ite.org).

Feargus O'Sullivan (2020), In Japan and France, Riding Transit Looks Surprisingly Safe, City Lab.

Polis (2020), <u>COVID-19: Keeping Things Moving</u>, Cities and Regions for Transport Innovation.

SLOCAT (2020), <u>COVID-19 and the Sustainable Transport Community</u>, Sustainable Low Carbon Transport Partnership (<u>https://slocat.net</u>).

Transit Center (2020), *How Transit Agencies Are Responding to the COVID-19 Public Health Threat*, (<u>https://transitcenter.org</u>).

TUMI (2020), <u>The COVID-19 Outbreak and Implications to Sustainable Urban Mobility – Some Observations</u>, Transformative Urban Mobility Initiative (<u>www.transformative-mobility.org</u>).

UITP (2020), <u>Management of COVID-19 Guidelines for Public Transport Operators</u>, Union Internationale des Transports Publics (International Association of Public Transport); at (<u>www.uitp.org</u>).

Affordability

For many households, the COVID-19 pandemic creates severe economic problems. Even before this pandemic, many low- and moderate-income households suffered from excessive housing, transportation and healthcare costs. This pandemic is causing large unemployment and business losses that will reduce many household's incomes. Although stimulus funds, unemployment insurance, and bill deferment policies provide some relief, many households will need additional short- and long-term solutions.

Although affordability concerns often focus on high housing costs, many households also face excessive motor vehicle cost burdens, including occasional large unexpected expenses from mechanical failures and crashes. Many moderate-income households have difficulty making vehicle loan, insurance or repair payments and will need affordable mobility options.

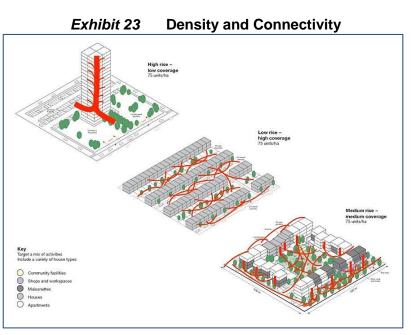
Below are local policies that can increase affordability:

- 1. Implement <u>eviction protection</u>, <u>rent moratoriums and deferrals</u>, plus subsidies for at risk households.
- Increase allowable <u>densities and building heights</u>, and allow compact, <u>missing middle</u> housing types (secondary suites, multi-plexes, townhouses and low-rise apartments) in walkable urban neighborhoods, particularly for corner or larger lots, adjacent to parks, or on busier streets, since these locations minimize negative impact on neighbours.
- 3. Reduce development fees, approval requirements and inclusivity mandates for moderate-priced (\$200,000-400,000 per unit) infill housing, since these are the projects we most need.
- 4. Reduce or eliminate <u>parking minimums</u> and favor unbundling (parking rented separately from housing units) so car-free households are not forced to pay for expensive parking facilities they do not need.
- 5. Allow higher densities and building heights in exchange for more affordable units. Minimum target densities can be applied in accessible locations, for example, at least three stories along minor arterials and four stories along major arterials.
- Improve affordable housing design. Municipal governments can support design workshops and contests to encourage better design. The <u>Affordable Housing Design Advisor</u>, the <u>Missing Middle Website</u>, and Portland's <u>Infill Design Project</u> are examples of affordable housing design resources.
- Improve <u>active transport</u> (walking and bicycling) and micro-mobility (<u>electric scooters and bicycles</u>) through improved sidewalks, crosswalks, bike lanes, <u>complete streets</u> policies, traffic calming and streetscaping.
- 8. Improve <u>public transport services</u> so vehicles and stations are less crowded, cleaner, better ventilated and less delayed, through better design, increased cleaning, dedicated bus lanes, all-door boarding, driver protection, and automated fare payments system, actions that improve convenience and comfort as well as reducing disease risks.
- Implement <u>Transportation Demand Management</u> (TDM), which includes various policies and programs that encourage more efficient travel behavior. Local and regional governments can implement TDM strategies and require large employers to have Commute Trip Reduction programs.
- Support development of <u>walkable urban villages</u> along frequent public transit corridors (also called <u>Transit Oriented Development</u> or TOD) to create neighborhoods where residents and workers can easily access common services and activities without a car.

Pandemic-Resilient Community Planning

This section explores ways to design communities to minimize contagion risks and maximize health and safety.

Housing with ground-floor access – a private door that connects directly to a sidewalk or driveway – minimizes contagion risks. Multi-family buildings with exterior stairs and walkways also have low risk. Buildings with shared entranceways, indoor hallways and elevators are likely to present additional risks, but these can be reduced with frequent cleaning and sanitizing, as well as resident and employee hygiene. To minimize environmental risks homes should be built to withstand local risks such as earthquakes, hurricanes, extreme heat and cold, and located outside floodplains and wildfire interface.



To reduce the isolation stress, homes need sufficient space and quiet, adequate light and ventilation, plus private outdoor areas such as a balcony or deck with seating, and, particularly for children, a yard or rooftop garden (Poon 2020; Zacka 2020). Home offices are desirable, particularly if household members work or study at home. Personal privacy is important, such as a home office or quiet workspace, particularly for home workers. Windows oriented to the street, and a front porch or low balcony, allow residents to wave and talk to neighbors while maintaining safe distances (sociable distancing).

A given density can be designed to have very different degrees of contagion risk, depending on pedestrian connectivity. For example, high-rise density tends to have low pedestrian connectivity, particularly if located in an automobile-dependent area were much of the land must be devoted to vehicle parking, while mid-rise density with numerous walkways can provide very high connectivity which minimizes crowding and contagion risks, as illustrated to the right.

Mid-rise, pedestrian-oriented development tends to maximize community cohesion (the quality of interactions among neighbor) and livability. A recent article by planner

Michael Mehaffy, Why We Need 'Sociable Distancing', shows how moderate-density, pedestrian-oriented development maximizes residents' ability to maintain social connections among homes, shops and pedestrians, which increases safety, health and happiness.

Urban space is a complex web of places where we can be, move, see and hear, and therefore connect. This provides sociable distancing, where people can safely interact with minimal contagion risks.

The National Association of City Transportation Officials (NACTO) developed the Rapid Response: Tools for *Cities* which describes ways that local governments can increase transport safety during this pandemic. These include prioritizing essential over non-essential travel, protecting front-line workers, and changing street design and management to provide more space and safety for pedestrians and bicyclists.

Exhibit 25 Roadway Management for Pedestrian and Bicycle Safety (NACTO 2020)

Many communities are changing streets to give pedestrians and bicyclists more space and safety.

The table below summarizes actions that households and communities can take to increase their resilience to pandemics and other economic, social and environmental shocks.

EXI	Exhibit 26 Resilience Planning Checklists					
	Households	Communities				
	 Resources to sanitize personal items, vehicles and homes, plus face masks and gloves. 	Good public health programs, particularly infectious disease control and smoking reduction.				
isks		Healthcare services able to handle surges.				
Reduces Pandemic Risks	 A home with adequate space, home offices, natural light and ventilation, and private outdoor spaces such as a balcony, deck or yard to provide comfort for extended isolation. 	Shared vehicles (taxis, ridehailing and public transport) density restrictions, cleaning and sanitizing, plus employee and passenger hygiene.				
ces F	Good communications resources, including	Minimal homelessness or inadequate housing.				
Reduc	telephone, internet service and computers for socializing, e-commerce and telework.	Programs to address mental illness, substance abuse, domestic violence, and vulnerable resident supports.				
	 Fitness program, including in-home exercise and nearby walking and bicycling. 	Expanded pedestrian facilities to prevent crowding, traffic calming and road space reallocation.				
	 Household emergency plan, including emergency contact information. 	 Effective emergency management with trustworthy leadership, reliable communications networks and critical supplies. 				
	 Emergency supplies, including first aid equipment, flashlights, mobile phone and portable radio backup power, and food for at 	Robust internet and telecommunications networks, e- government, e-commerce, and delivery services.				
s	least two weeks.A home in a relatively safe location (out of	Restrictions on development in high-risk areas such as floodplains and wildfire interface.				
Reduces All Risks	floodplains and wildfire interface) built to withstand local risks such as earthquakes, hurricanes, plus extreme heat and cold.	Zoning codes and house retrofit programs that ensure homes can withstand local risks such as earthquakes, and extreme weather, and are energy efficient.				
Redu	 Comfortable shoes for walking and a sturdy bicycle for riding. 	Compact, walkable and bikeable neighborhoods where most essential services and activities can be accessed				
	• Housing in a compact, walkable and bikeable	without using an automobile.				
	neighborhood where essential services and activities are accessible without a car.	Sufficient affordable housing to serve demand.				
	Ways to reduce household expenditures if	Community cohesion, so most residents have positive relationships with their neighbors.				
	income declines.	Unemployment insurance and support for lower-income				

Exhibit 26 Resilience Planning Checklists

Positive relationships with neighbors.

•

Good planning by households and communities can increase their resilience to pandemics and other risks.

This analysis indicates that, although affluent motorists may be healthy and happy in automobiledependent areas, such locations impose significant costs and constraints: they require every adult to own a private vehicle, and offer poor mobility options for residents who cannot, should not, or prefer not to drive. In such areas, physical and digital access to essential services and activities is limited and expensive. For most households, the safest, healthiest and most resilient home is located in walkable urban neighborhood where commonly-used services and activities are easy to access on foot and by bicycle.

households.

Comprehensive Solutions

Comprehensive planning recognizes that flues are just one type of infectious diseases, infectious disease reduction is just one public health objective, and improving public health is just one community planning goal. A basic principle of good planning is that individual, short-term decisions should be consistent with strategic, long-term community goals. As a result, comprehensive planning favors "win-win" solutions to pandemic problems that also help achieve other community goals.

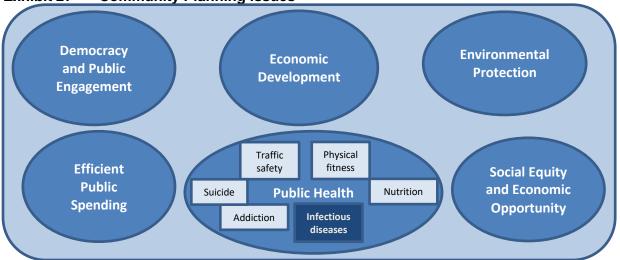


Exhibit 27 Community Planning Issues

Infectious diseases – including flu pandemics – are just one of many public health risks, and reducing these risks is just one of many community planning goals. Comprehensive planning strives to find win-win solutions that help achieve multiple community goals – such as solutions to pandemic problems that also support economic development, social equity and environmental protection.

Many pandemic solutions help achieve other planning goals, as illustrated in the following matrix. For example, walking and bicycling improvements, reducing automobile travel and increasing affordable housing options helps achieve various health, social equity and environmental protection goals.

Exhibit 28 Benefits Provided by Various Policies

Policy Solutions	Reduce Contagion	Public Health	Sustainability
Limit public gatherings and activities	\checkmark		
Targeted cleaning and hygiene	\checkmark	\checkmark	
Improve public health and emergency services	\checkmark	\checkmark	
Walking and bicycling improvements	\checkmark	\checkmark	\checkmark
Encourage public transport use		\checkmark	\checkmark
Reduce private auto travel		\checkmark	\checkmark
Reduce homelessness	\checkmark	\checkmark	\checkmark
Affordable infill housing	\checkmark	\checkmark	\checkmark
Traffic safety programs		\checkmark	
Assist low-income households	\checkmark	\checkmark	\checkmark

Policy solutions vary in their scope of benefits. Smart planning favors solutions that also help achieve multiple goals, such as pandemic control policies that support other public health and sustainability objectives.

Conclusions

A basic test of human intelligence is whether we learn from previous experiences and generalize those lessons to solve new problems. There is much to learn from the COVID-19 pandemic to better prepare for future pandemics and other health, social and economic threats.

Many people assume that cities are more dangerous than rural areas during a pandemic, but most infection risks are associated with specific activities – long-distance travel, worksites, stores and social gatherings – that are similar in cities, suburbs and rural areas. Although cities tend to have higher contagion risk, other factors have more effect on mortality rates, so dense cities with good public health programs have lower infectious disease fatality rates than rural areas with poor public health programs. Overall, urban residents tend to be healthier and live longer than in rural areas, as illustrated to the right.

If COVID-19 follows the pattern of previous pandemics, controlling it will require months of travel restrictions and isolation requirements. This creates various domestic, social and economic problems for households, businesses and communities. Resilience requires robust physical and social infrastructure that allows people to protect themselves and their neighbors, including trustworthy leadership, responsive community organizations, plus neighborhood design that facilitates social connections.

To improve resilience, communities need effective emergency response programs, contagion control, adequate housing for all residents, physical and mental support for isolated people, and affordability. Homes can be designed to reduce guarantine stress, with adequate space, light and ventilation, and located in walkable neighborhoods. Ground-floor access is safest, but risks can be minimized in multi-family housing with appropriate cleaning and sanitizing, plus resident and employee hygiene. Homelessness tends to increase contagion risks, so everybody is safer if it is eliminated. Intercity travel can introduce infections into a community, and local travel can disperse it. All shared vehicles can spread germs, including taxis, ridehailing, public transit, and private automobiles that carry family and friends. This suggests that to increase safety, residents should minimize shared vehicle travel, and shared vehicle operators and passengers should ensure appropriate distancing, sanitizing and hygiene practices. Walking and bicycling are generally the safest modes, are affordable and provide exercise, so improving their conditions tends to increase resilience, particularly expanding facilities to prevent pedestrian and bicyclist crowding.

Pandemics are just one of many risks communities face, and generally not the most important, so it would be inefficient to implement contagious disease control strategies that increase other problems, for example, by reducing physical activity which increases cardiovascular disease, or increasing vehicle travel and therefore traffic casualties and pollution emissions. Many "win-win" solutions can help reduce pandemic risks and achieve other community goals, such as increasing affordability and economic opportunity, and reducing traffic problems and pollution emissions.

Exhibit 29 Analysis Scope	
Risks	Analysis Question
1. Infectious diseases pandemics	How do pandemics compare with other risks? What factors affect these risks, and how can they be reduced?
2. Disaster risks	How do disasters compare with other risks? How can communities minimize disaster deaths, injuries and damages?
3. Health risks	How do various health risk compare? What factors affect community health and longevity, and how can they be maximized?
4. Economic, social and environmental risks	How does health compare with other community goals? What trade-offs exist between these goals? What win-win strategies provide multiple benefits?

F...... Analysis Soona

References

Emily Badger (2020), "Density Is Normally Good for Us. That Will Be True after Coronavirus, Too," *New York Times*, 24 March, (<u>www.nytimes.com</u>); at <u>https://nyti.ms/2UUrVE8</u>.

Laura Bliss and Kriston Capps (2020), *Are Suburbs Safer From Coronavirus? Probably Not*, City Labs (<u>www.citylab.com</u>); at <u>https://bit.ly/2X2o36A</u>.

James Brasuell (2020), *The Crisis Within the Crisis: Homelessness and Housing Pushed to the Brink by COVID-19*, Planetizen (<u>www.planetizen.com/node/108864</u>).

Katie Canales (2020), "San Francisco Will Temporarily House Members of its Homeless Population Who are Infected with the Coronavirus in RVs," *Business Insider*, 11 March; at <u>https://bit.ly/2WZXKOq</u>.

CEBM (2020), *Global COVID-19 Case Fatality Rates*, Centre for Evidence-Based Medicine (<u>www.cebm.net</u>); at <u>www.cebm.net/COVID-19/global-COVID-19-case-fatality-rates</u>.

Siddharth Chandra, et al. (2013), "A Geographic Analysis of Population Density Thresholds in the Influenza Pandemic of 1918–19," *International Journal of Health Geography*, Vol. 12, 9 (<u>https://doi.org/10.1186/1476-072X-12-9</u>).

Arthur G. Cosby, et al. (2019), "Growth and Persistence of Place-Based Mortality in the United States: The Rural Mortality Penalty," *American Journal of Public Health*, Vo. 109, 1, pp. 155-162 (doi:10.2105/AJPH.2018.304787); at www.ncbi.nlm.nih.gov/pmc/articles/PMC6301407.

Benjamin D. Dalziel, et al. (2018), "Urbanization and Humidity Shape the Intensity of Influenza Epidemics in U.S. Cities," *Science*, Vol. 362/6410, pp. 75-79 (DOI: 10.1126/science.aat6030).

Irvin Dawin (2020), *Density in the Pandemic Era*, Planetizen (<u>www.planetizen.com</u>); at <u>www.planetizen.com/news/2020/03/108778</u>.

Jason DeParle (2020), "The Coronavirus Class Divide: Space and Privacy," *The New York Times*, 12 April; at <u>www.nytimes.com/2020/04/12/us/politics/coronavirus-poverty-privacy.html</u>.

DHUD (2018), *Annual Homeless Assessment Report (AHAR) to Congress*, US Department of Housing and Urban Development; at <u>www.novoco.com/sites/default/files/atoms/files/hud_ahar_2018_121718.pdf</u>.

Jake Dobkin and Clarisa Diaz (2020), *Coronavirus Statistics: Tracking the Epidemic In New York*, The Gothamist (<u>https://gothamist.com</u>); at <u>https://bit.ly/34uSeoO</u>.

Reid Ewing and Shima Hamidi (2015), "Compactness Versus Sprawl: A Review of Recent Evidence from the United States," *Journal of Planning Literature*, Vol. 30, pp. 413-432 (doi: 10.1177/0885412215595439).

Yingling Fan and Yan Song (2009), "Is Sprawl Associated with a Widening Urban–Suburban Mortality Gap?," *Journal of Urban Health*, Vo. 86, pp. 708–728 (doi: 10.1007/s11524-009-9382-3); at https://bit.ly/2yUHyny.

Kim Fletcher, et al. (2014), *A Guide for Public Transportation Pandemic Planning and Response*, National Academies Press (<u>https://doi.org/10.17226/22414</u>).

Justin Fox (2020), "Density Isn't Destiny in the Fight Against COVID-19," *Bloomberg News* (www.bloomberg.com); at <u>https://bloom.bg/3ehxbui</u>.

Chad Frederick, Anna Hammersmith and John Hans Gilderbloom (2019), "Putting 'Place' in its Place: Comparing Place-based Factors in Interurban Analyses of Life Expectancy in the U.S.," *Social Science & Medicine*, Vo. 232, pp. 148-155 (doi.org/10.1016/j.socscimed.2019.04.047); at https://bit.ly/2REhmUG.

John Fritze (2020), "Fauci Predicts Up to 200,000 U.S. Deaths as Trump Weighs Adjusting Coronavirus Guidelines," USA Today, 29 March (<u>www.usatoday.com</u>); at <u>https://bit.ly/2R5rxkX</u>.

Thomas Fuller (2020), *Coronavirus Outbreak Has America's Homeless at Risk of 'Disaster', New York Times* 12 March; at <u>www.nytimes.com/2020/03/10/us/coronavirus-homeless.html</u>.

Salim Furth (2020), *Automobiles Seeded the Massive Coronavirus Epidemic in New York City*, Market Urbanism (<u>https://marketurbanism.com</u>); at <u>https://bit.ly/2VwKhg1</u>.

Aaron Gordon (2020), *It's Easy, But Wrong, to Blame the Subway for the Coronavirus Pandemic,* Motherboard (<u>www.vice.com</u>); at <u>https://bit.ly/2RVDppZ</u>.

Henry Grabar (2020), "Nothing About New York's Outbreak Was Inevitable," *Slate* (<u>https://slate.com</u>); at <u>https://slate.com/business/2020/04/coronavirus-new-york-city-outbreak-blame.html</u>.

Victoria Hansen, et al. (2016), "Infectious Disease Mortality Trends in the United States, 1980-2014," *Journal of the American Medical Association*, Vol. 316, No 20, pp. 2149-2151 (doi:10.1001/jama.2016.12423); at https://jamanetwork.com/journals/jama/fullarticle/2585966.

Shima Hamidi, et al. (2018), "Associations between Urban Sprawl and Life Expectancy in the U.S.," Int. In. of Environmental Research and Public Health, Vol. 15/5 (doi:10.3390/ijerph1505086); at https://bit.ly/2Ni4L5i.

Jeffrey E. Harris (2020), *The Subways Seeded the Massive Coronavirus Epidemic in New York City*, Working Paper 27021, National Bureau of Economic Research (<u>www.nber.org</u>); at <u>www.nber.org/papers/w27021</u>.

Jack Healy, et al. (2020), "Coronavirus Was Slow to Spread to Rural America. Not Anymore," *New York Times*, 8 April (<u>www.nytimes.com</u>); at <u>https://nyti.ms/2UXVoyk</u>.

Sophia Heisler (2020), *Where and When Local Travel Decreased from COVID-19 Around the World*, Map Box (<u>https://mapbox.com</u>); at <u>https://bit.ly/3aGqCiS</u>.

Helpline (2016), *The Most Dangerous Epidemics in U.S. History: A look back*, <u>https://bit.ly/2X7b5V9</u>.

Ben Holland (2020), *Coronavirus and the Fragility of Auto-Centric Cities*, Rocky Mountain Institute (<u>https://rmi.org</u>); at <u>https://rmi.org/coronavirus-and-the-fragility-of-auto-centric-cities</u>.

Dan Keating and Laris Karklis (2020), "Rural areas may be the most vulnerable during the coronavirus outbreak," Washington Post, 19 March (www.washingtonpost.com); at <u>https://wapo.st/346UX7r</u>.

Roger Keil, Creighton Connolly and S. Harris Ali (2020), "Outbreaks Like Coronavirus Start in and Spread from the Edges of Cities," *The Conversation* (<u>https://theconversation.com</u>); at <u>https://bit.ly/2UGjjlJ</u>.

Don Kostelec (2020), *Maintaining Social Distance along Substandard Sidewalks & Pathways*, Kostelec Planning (<u>www.kostelecplanning.com</u>); at <u>https://bit.ly/2ULSX1u</u>.

Nicholas Kristof (2020), "The Best-Case Outcome for the Coronavirus, and the Worst," *New York Times*, 20 March (<u>www.nytimes.com</u>); at <u>https://nyti.ms/3bQZii5</u>.

Michael Lewyn (2020), *Elevators Are Not the Villain*, Planetizen (<u>www.planetizen.com/blogs/109297</u>).

Andrew Leonard (2020), "Taiwan Is Beating the Coronavirus. Can the US Do the Same? *Wired*, 18 March (www.wired.com) www.wired.com/story/taiwan-is-beating-the-coronavirus-can-the-us-do-the-same.

Florian Lederbogen, Leila Haddad, Andreas Meyer-Lindenberg (2013), "Urban Social Stress – Risk factor for Mental Disorders. The Case of Schizophrenia," *Environmental Pollution*, (<u>http://dx.doi.org/10.1016/j.envpol.2013.05.046</u>); at <u>https://bit.ly/2DXKrpb</u>.

Alon Levy (2020), *The Subway is Probably not Why New York is a Disaster Zone*, Pedestrian Observations (<u>https://pedestrianobservations.com</u>); at <u>https://bit.ly/2VkZ0ut</u>.

Alon Levy and Eric Goldwyn (2020), *How U.S. Public Transit Can Survive Coronavirus*, City Lab (<u>www.citylab.com</u>); at <u>https://bit.ly/35bvB9l</u>.

Ruiqi Li, Peter Richmond and Bertrand M. Roehner (2018), "Effect of Population Density on Epidemics," *Physica A*, Vol. 510, pp. 713-724 (doi.org/10.1016/j.physa.2018.07.025); at https://bit.ly/2R9TFn5.

Bill Lindeke (2020), *It's Not Density That's Driving the American Pandemic*, Streets MN (<u>https://streets.mn</u>); at <u>https://streets.mn/2020/03/24/its-not-density-thats-driving-the-american-pandemic</u>.

Todd Litman (2005), "Terrorism, Transit and Public Safety: Evaluating the Risks," *Journal of Public Transit*, Vol. 8, No. 4 (<u>www.nctr.usf.edu/jpt/journal.htm</u>), pp. 33-46.; at <u>www.vtpi.org/transitrisk.pdf</u>.

Todd Litman (2018), *Evaluating Public Transportation Health Benefits*, American Public Transportation Association (<u>www.apta.com</u>); at <u>www.vtpi.org/tran_health.pdf</u>.

Todd Litman (2019), *Understanding Smart Growth Savings*, Victoria Transport Policy Institute (<u>www.vtpi.org</u>); at <u>www.vtpi.org/sg_save.pdf</u>.

Todd Litman (2020), *Planning Healthy Communities—Beyond the Hype*, Planetizen (<u>www.planetizen.com</u>); at <u>www.planetizen.com/blogs/108789-planning-healthy-communities-beyond-hype</u>.

Melissa Lunden and Meghan Thurlow (2020), *The Stunning Impact of COVID-19 Social Distancing on Air Pollution*, GreenBiz (<u>www.greenbiz.com</u>); at <u>https://bit.ly/2VfFFt8</u>.

Mike Lydon (2020), *Let's Not Overthink This: Opening Streets is Easy*, Streetsblog USA (<u>https://usa.streetsblog.org</u>); at <u>https://bit.ly/34KI3MK</u>.

Michael Mehaffy (2020), "Why We Need 'Sociable Distancing'", *The Public Square*, Congress for New Urbanism (<u>www.cnu.org</u>); at <u>https://bit.ly/2Xpb1Af</u>.

NACTO (2020), *Rapid Response: Tools for Cities*, National Association of City Transportation Officials (<u>www.nacto.org</u>); at <u>https://nacto.org/covid19-rapid-response-tools-for-cities</u>.

Dennis Normile (2020), "Coronavirus Cases have Dropped Sharply in South Korea. What's the Secret to its Success?" *Science*, 17 March (<u>www.sciencemag.org</u>); at <u>https://bit.ly/39wxa29</u>.

PHSD (2018), *Leading Causes of Death*, Public Health Sudbury (<u>www.phsd.ca</u>); at <u>https://bit.ly/39ylVpD</u>.

Linda Poon (2020), *A Lesson from Social Distancing: Build Better Balconies*, City Lab (<u>www.citylab.com</u>); at <u>www.citylab.com/life/2020/04/apartment-design-balcony-private-outdoor-space-zoning-laws/610162</u>.

Reuters (2017), Factbox: Attacks on Mass Transit Around the World; at https://reut.rs/39MRGM9.

Hannah Ritchie and Max Roser (2020), *Natural Disasters*, OurWorldInData; at <u>https://ourworldindata.org/natural-disasters</u>.

Louis Sahagun (2020), "Coronavirus Stay-At-Home Orders have Reduced Traffic Accidents by Half," *Los Angeles Times*, 1 April (<u>www.latimes.com</u>); at <u>https://lat.ms/2xIrCUK</u>.

James F. Sallis, et al. (2016), "Physical Activity in Relation to Urban Environments in 14 Cities Worldwide: A Cross-Sectional Study," *The Lancet*, Vol. 387, pp. 2207–2217; at <u>https://bit.ly/1RSchnU</u>.

Gopal K. Singh and Mohammad Siahpush (2014), Widening Rural-Urban Disparities in Life Expectancy, U.S., 1969-2009," *American Journal of Preventive Medicine*, Vo. 46(2), pp. 19-29 (doi:10.1016/j.amepre.2013.10.017); at <u>www.ajpmonline.org/article/S0749-3797(13)00590-4/fulltext</u>.

Gopal K. Singh and Mohammad Siahpush (2014b), "Widening Urban-Rural Disparities in All-cause Mortality and Mortality from Major Causes of Death in the USA, 1969-2009, *Journal of Urban Health*, Vo. 91(2): 272-292 (doi: 10.1007/s11524-013-9847-2); at www.ncbi.nlm.nih.gov/pmc/articles/PMC3978153.

SLOCAT (2020), *COVID-19 and the Sustainable Transport Community*, Sustainable Low Carbon Transport Partnership (<u>https://slocat.net</u>); at <u>https://slocat.net/COVID-19-and-the-sustainable-transport-community</u>.

Noah Smith (2020), "New York is a Hot Zone but Not Because of City Living," *Bloomberg News*, (www.bloomberg.com); at https://bloom.bg/3aCpXyD.

Robert Steuteville (2020), "Facts Don't Support the 'Density Is Dangerous' Narrative," *Public Square* (www.cnu.org); at www.cnu.org/publicsquare/2020/03/23/plague-don%E2%80%99t-count-cities-out.

Rajendra Subedi, T. Lawson Greenberg and Shirin Roshanafshar (2019), *Does Geography Matter in Mortality?*, Statistics Canada (<u>www.doi.org/10.25318/82-003-x201900500001-eng</u>).

Transit Center (2020), *How Transit Agencies Are Responding to the COVID-19 Public Health Threat*, (<u>https://transitcenter.org</u>); at <u>https://bit.ly/2X2Ch7I</u>.

TUMI (2020), *The COVID-19 Outbreak and Implications to Sustainable Urban Mobility – Some Observations*, Transformative Urban Mobility Initiative (<u>www.transformative-mobility.org</u>); at <u>https://bit.ly/3dLQ6gq</u>.

UITP (2020), *Management of COVID-19 Guidelines for Public Transport Operators*; Union Internationale des Transports Publics (International Association of Public Transport) (<u>www.uitp.org</u>); at <u>www.uitp.org/sites/default/files/cck-focus-papers-files/Corona%20Virus_EN.pdf</u>.

Robert Verity, et al. (2020), "Estimates of the Severity of Coronavirus Disease 2019: A Model-Based Analysis," *The Lancet* (DOI: <u>https://doi.org/10.1016/S1473-3099(20)30243-7</u>).

Steve Winkelman (2020), *Mobilizing Against COVID-19 (by Staying Put)*, Green Resilience (<u>www.greenresilience.com</u>); at <u>www.greenresilience.com/covid-climate-transport</u>.

Chris Woodyard (2020), "Why the Homeless, 'Surviving the Best Way They Can,' Are Vulnerable to Coronavirus," *USA Today*, 14 March 2010 (<u>www.usatoday.com</u>); at <u>https://bit.ly/39uCmmT</u>.

Katherine J. Wu (2020), "What Scientists Know About Immunity to the Novel Coronavirus," *Smithsonian Magazine*; at <u>www.smithsonianmag.com/science-nature/can-you-become-immune-sars-cov-2-180974532</u>.

Bernardo Zacka (2020), "An Ode to the Humble Balcony. It is private, yet public; exposed, yet secluded. It offers company without the demands of intimacy, and we should never take it for granted again", *New York Times* (www.nytimes.com); at www.nytimes.com/2020/05/09/opinion/covid-balconies-architecture.html.

www.vtpi.org/PRCP.pdf

Connect SoCal Update

Jason Greenspan Sustainability Department June 18, 2020

www.scag.ca.gov

Connect SoCal & COVID-19

SCAG Regional Council adopted Connect SoCal for Federal conformity purposes. Our next steps:

- "(2) Allow for more time (120 days) to review Connect SoCal and consider its implications in light of the short and long-term impacts of the COVID-19 pandemic on the region as requested by many stakeholders;
- (4) provide a progress report describing modifications to the SCS and associated modeling and analysis within 60 days;
- (5) work with local authorities to identify and restore locally approved entitlements as conveyed by local jurisdictions..."

Connect SoCal & COVID-19

During the 120-day period:

- Listen to varied stakeholders
- Develop research and data to assist informed decision making
- Make limited technical refinements to Connect SoCal regarding entitlements
- Refine planned implementation programs based on community input to address a "post-pandemic recovery world"
- Identify long-term considerations for future plan amendments & the 2024 plan update

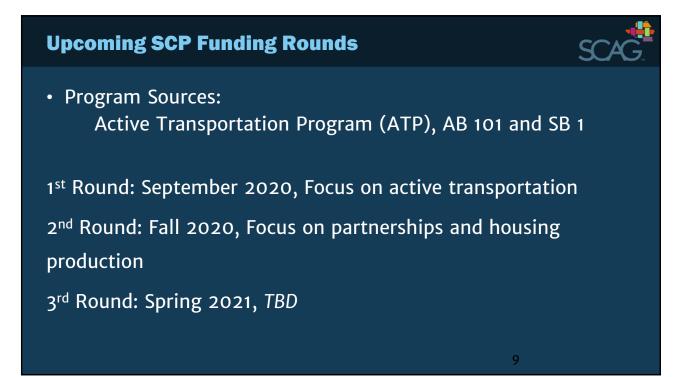
Connect SoCal & COVID-19

SCAG is listening to stakeholders and community based organizations:

- What are the immediate impacts of COVID-19 on your community's transportation and housing needs?
- How can SCAG and our partners better engage your communities during the pandemic recovery period?
- What are the long term considerations regarding COVID-19 and your communities?

Sustainable Communities Program

Sarah Dominguez Sustainability Department June 18, 2020



www.scag.ca.gov

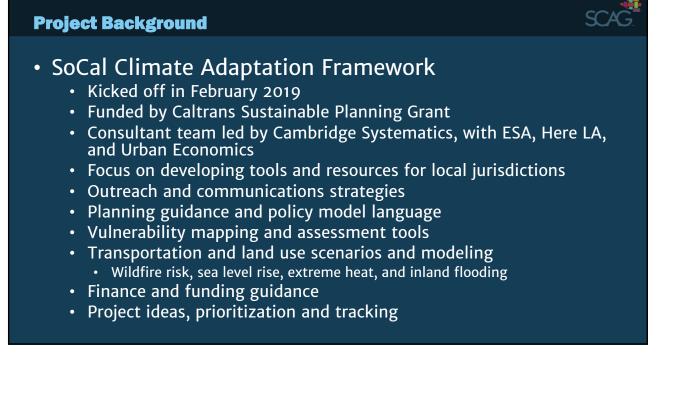
What is the Sustainable Communities Program (SCP)?

- Technical Assistance Program
- Implements Connect SoCal, the Regional Transportation Plan/ Sustainable Communities Strategy (RTP/ SCS)
- Over 300 projects and \$30 million in funding awarded

3rd Round Opportunity

- Help inform the 3rd round of the SCP call for proposals
- Input received during Connect SoCal development will be a starting point
- Guidelines development to be discussed at the fall SCWG meeting

10

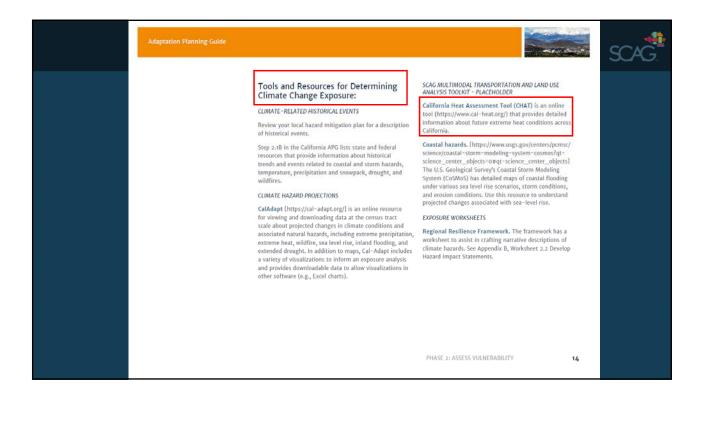

SCAG Climate Adaptation Framework

Climate Adaptation Working Group – Meeting 5 Joint meeting with Public Health and Sustainable Communities

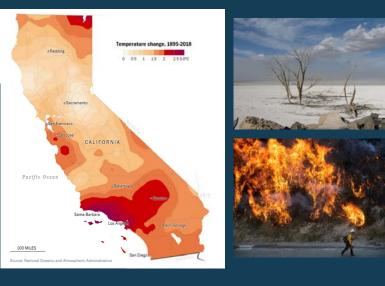
SCAG Sustainability Department, Cambridge Systematics, HereLA, and ESA June 18, 2020

www.scag.ca.gov

Southern California Adaptation Planning Guide


- Aligned with phases and steps in the California Adaptation Planning Guide (Draft 2020)
- Highlights content from other key resource documents
- Incorporates examples from within the SCAG region
- Identifies tools and resources for each phase and step

3

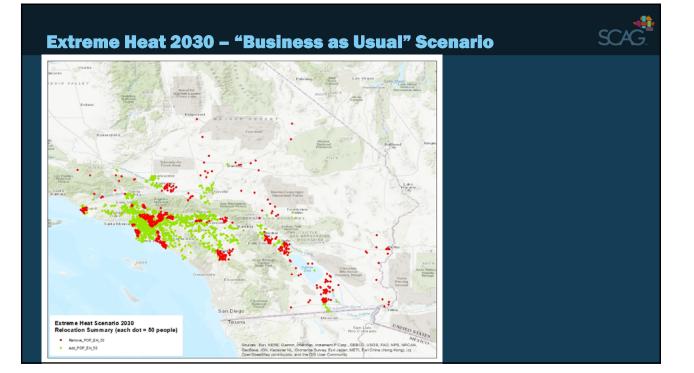


SoCal Adaptation Planning Guide

SCAG

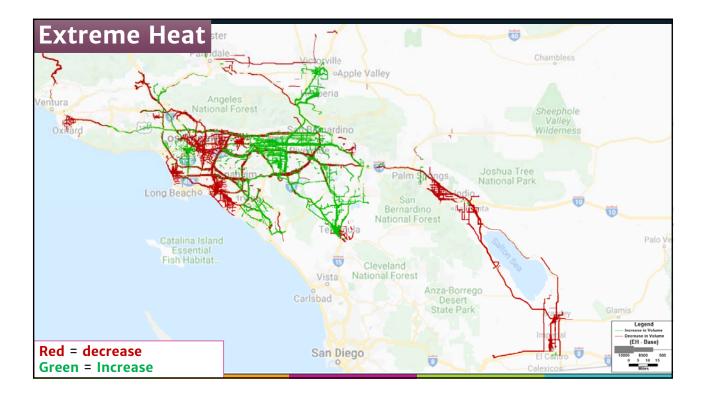
Summarize Climate Change Impacts Specific to SCAG Region

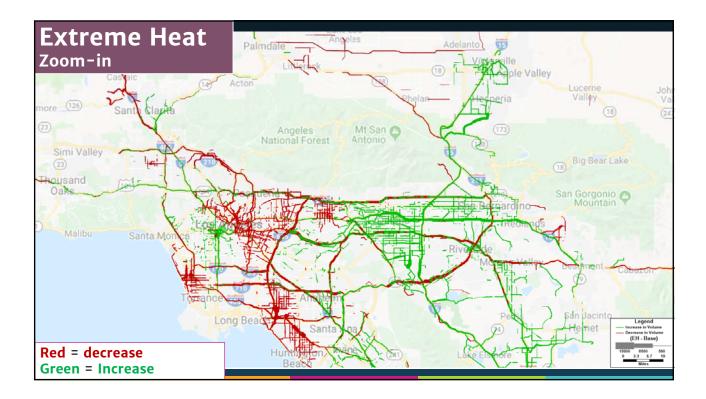
- Extreme Heat
- Sea Level Rise/Coastal Flooding and Erosion
- Severe Storms/Wind
- Inland Flooding
- S Drought
- Wildfire
- Air Quality and Vector Borne Diseases
- 🔩 Landslides
- Pests and Ecological Hazards

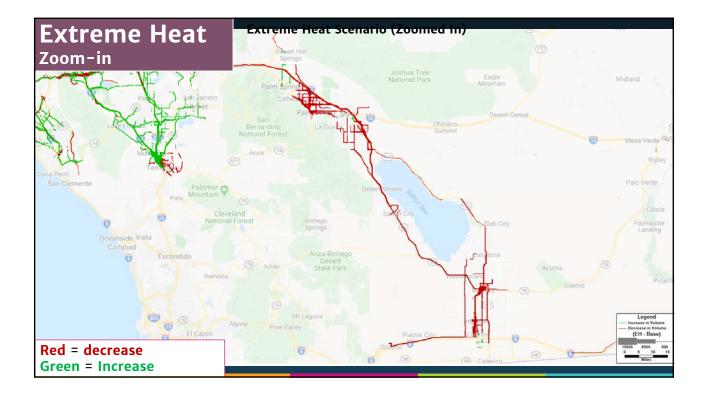

SoCal Adaptation Planning Guide

Guides and tools related to health are referenced, including:

- California Building Resilience Against Climate Effects (CalBRACE)
- California Heat Assessment Tool (CHAT)


Extreme Heat Scenario Development and Modeling Data from CHAT tool: Annual Days of Heat Health Events More complex than temperature forecast data Heat Health Events defined as heat waves which cause spikes in mortality and hospital visits Sensitive to ratios of elderly and vulnerable populations, hospital beds, cooling centers, tree cover, etc. "Business as usual" relocation scenario starts relocating demographics once 30 days per year of heat health events reached at 1% per day relocated, 70 days = 40% relocated; 50 days = 20% relocated, 70 days = 40% relocated.





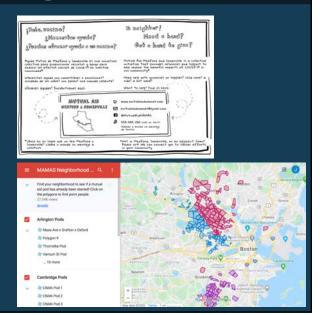
Extreme Heat Health Events 2030 "Business as Usual" Scenario

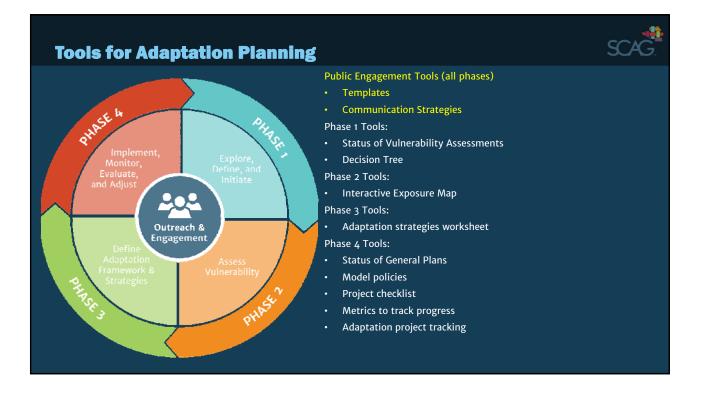
		Base			Extreme Heat				Numeric Di	fference		Difference					
Code	County	Trips	VMT	VHT	VHD	Trips	VMT	VHT	VHD	Trips	VMT	VHT	VHD	Trips	VMT	VHT	VHD
1	Imperial	524,487	6,755,364	120,182	3,519	464,631	6,225,064	110,087	2,874	(59,856)	(530,300)	(10,095)	(645)	-11%	-8%	-8.40%	-18.34%
2	Los Angeles	22,544,031	234,673,126	7,195,893	2,251,895	22,416,901	233,736,930	7,212,870	2,287,800	(127,130)	(936,196)	16,978	35,905	-1%	0%	0.24%	1.59%
3	Orange	8,097,287	79,600,042	2,091,159	549,667	8,074,927	79,553,716	2,099,833	559,164	(22,360)	(46,327)	8,673	9,497	0%	0%	0.41%	1.73%
4	Riverside	6,293,669	77,764,585	1,994,026	575,835	6,347,084	78,077,313	2,078,758	652,601	53,416	312,727	84,732	76,766	1%	0%	4.25%	13.33%
5	San Bernardino	5,560,880	75,639,862	1,572,418	210,823	5,676,502	76,634,464	1,616,612	234,797	115,622	994,602	44,194	23,973	2%	1%	2.81%	11.37%
6	Ventura	2,180,683	19,718,820	465,617	88,599	2,166,273	19,541,435	463,005	89,838	(14,409)	(177,385)	(2,612)	1,239	-1%	-1%	-0.56%	1.40%
	Total	45,201,037	494,151,800	13,439,295	3,680,338	45,146,319	493,768,921	13,581,166	3,827,073	(54,718)	(382,878)	141,871	146,735	-0.12%	-0.08%	1.06%	3.99%



SoCal Adaptation Planning Guide

Equity considerations integrated throughout the phases and steps:


- Engagement
- Goal setting
- Vulnerability assessment
- Developing adaptation strategies
- Guides and tools



Southern California Adaptation Planning Guide

Climate event emergency resilience during pandemics:

- Mutual Aid Medford and Somerville network in Massachusetts (example)
 - Neighborhoods mapped into pods
 - Each pod has a leader
 - Virtual platform to post resources or requests during stay-at-home order
 - Approaches to reach neighbors with limited internet access
 - Resilience hubs can serve as an adaptation strategy to provide support before, during and after emergency events

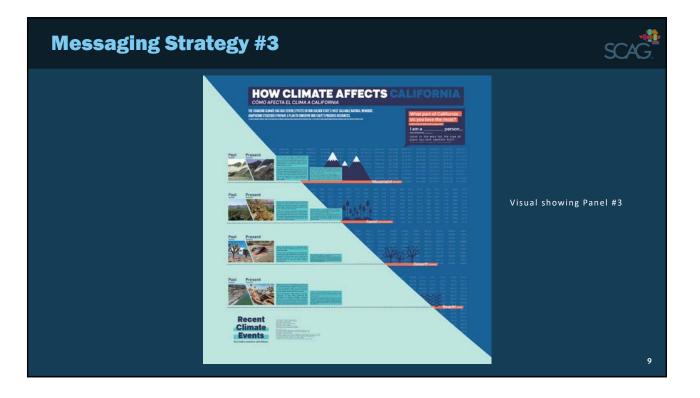
Outreach Overview

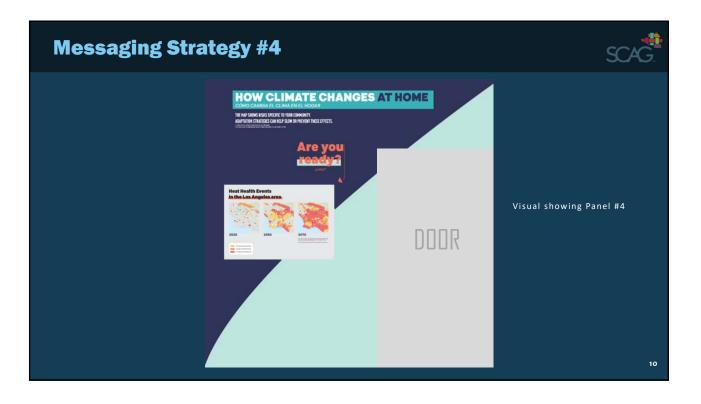
What is the Climate Talks Box?

An immersive pop-up experience, crafted with sustainable materials, educating the public about climate change and climate adaptation strategies.

<u>Goal</u>

Test four different messaging strategies about climate change to understand what resonates with people who live in the SCAG region.


Messaging Strategies


- How climate change causes personal, monetary & health-related harm
- 2. How trusted leaders are speaking about climate change
- How climate change is affecting California's natural resources
- How climate change will affect the region surrounding the pop-up

Outreach Workshop Templates

WHAT IS INCLUDED IN THE WORKSHOP TEMPLATE

This workshop template includes three customizable components:

- A presentation slide deck tailored to SCAG jurisdictions who would like to engage constituents in a conversation about climate adaptation and/or mitigation.
- 2 Materials for an interactive activity, in both group and individual formats.
- 3 Corresponding meeting announcements and invites that you can change for your event

All template components provide you with a flexible base. Add to and change them as you see fit.

HOW TO USE THIS TEMPLATE

- Read through this Guide to help orient yourself to the materials included, messaging strategies, and best practices as you craft your communications approach.
- Open up the presentation slide deck in either InDesign or PowerPoint and start to move things around, add your content, and customize the presentation as you see fit.
- Modify the template invitations/notices and send them to your constituents to announce your upcoming workshop.
- Print out the final materials or project them digitally at your workshop to start the conversation!

Communication Strategies

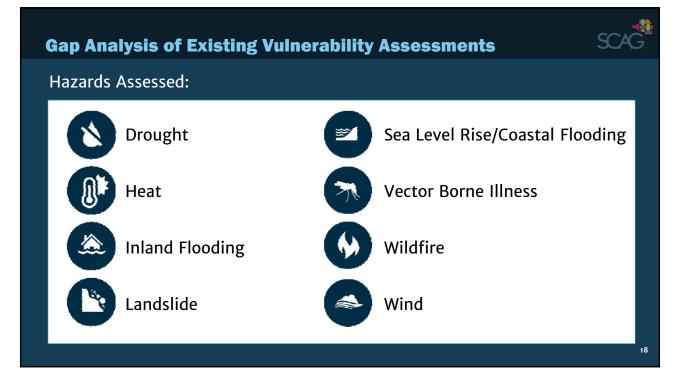
1) Make it personal

ng strategy that

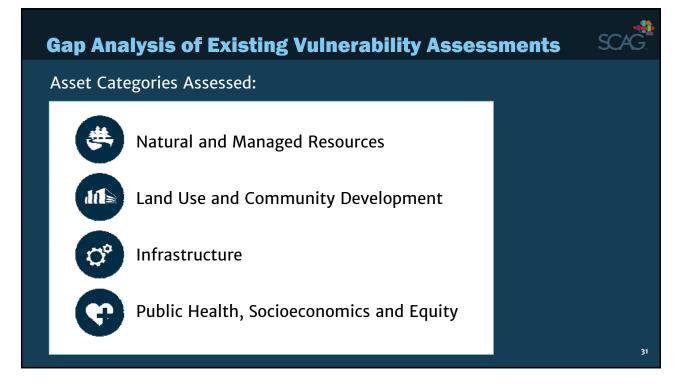
- This strategy ranked as the most effective during
- Use facts that can apply to an individual's or family's life and phrase the risk so that the effects are tangible. A utility bill increasing by hundreds of dollars is an experience that is easy to grasp; it is much more difficult to grasp a change in millions of dollars to a government's budget. As an example, we have included four such facts in the "How the Climate Affects You" section of the slide deat.
- deck.

2) Localize and concretize

- In this strategy, you can direct your audience's feelings of attachment towards a place, into collective support. Use a visual (photographs, videos, renderings) to show the before and after effects of our changing climate. This allows attendees to see the effects for themselves.
 A good subject is nearby nature that has been affected by extreme weather events.
 As an additional note, the literature shows that conservative audiences respond more favorably to changes that are framed as the "past & present," whereas liberal audiences preferred a "present & future" framing.
 See the examples in the "How the Climate Affects California" section of the slide deck.


3) Map the risk

- This strategy uses mapping visualization to help participants understand the future effects of climate
- participants understand the future effects of climate change. It is important to keep in mind that map-reading is a special skill. Aid participant understanding by ensuring your visualizations are focused on your immediate locality, and that familiar landmarks are called out. Connecting the familiar (local places) to the hard-to-graph (future climate effects) builds a kind of support orgunded in personal affection.
- grounded in personal affection. See the examples in the "How Climate Changes at Home" section of the slide deck.


4) Bring in a trusted advisor:

- This strategy requires the identification of a leader or authority figure with whom your community has a rapport and finding a values-based message that will resonate with them.
 This can occur as quotes, a video message, or an in-person appearance. The literature says this strategy can work especially well with older, and more conservative constituencies.
 However, appropriate advisor selection can align this strategy with a wide range of ideologies. Notably, this strategy was reported as slightly less impactful than the other strategies explained here.
 See the examples in the "How the Climate Affects Us" section of the slide deck.

Vulnerability Assessment Snapshots by County									
vulnerability Assessment Snapsnots by County	0	0	۵	Hazardı	Assessed	0	0	9	
Key Documents Reviewed	Drought	Heat	Inland Flooding	Landslide	Sea Level Rise/ Coastal Flood	Widtee	Wind	Vector Borne Bress	
Imperial County	1		-						
Seismic and Public Safety Element of General Plan			•			•			
Imperial County Climate Change and Health Profile Report	0	0			0	0		0	
Imperial County Multi-Jurisdiction Hazard Mitigation Plan			•	0					
Los Angeles County									
Local All-Hazard Mitigation Plan	•		•			•			
Our County: Los Angeles Countywide Sustainability Plan	0	0	0		0	0		0	
Los Angeles County Climate Change and Health Profile Report	0	0			0	0		0	
The LA Metro Climate Action and Adaptation Plan		•	•	•	•	•			
AdaptLA					•				
Public Beach Facilities Sea-Level Rise Assessment					•				
Orange County	-				A Designation of the local division of the			8	
Regional Water and Wastewater Hazard Mitigation Plan	•								
Local Hazard Mitigation Plan	•	•	•			•			
Orange County Climate Change and Health Profile Report	0	0			0	0		0	
General Plan Safety Element			0		0	0		1.17	
Riverside County									
Local Hazard Mitigation Plan	•	•	0						
Riverside County Climate Change and Health Profile Report	0	0				0		0	
General Plan Safety Element			•			•			
San Bernandino County									
Local Hazard Mitigation Plan	•	0	•			•			
San Bernardino County Climate Change and Health Profile Report	0	0				0		0	
Ventura County			1		· · · · · · · · · · · · · · · · · · ·			1 Ja	
Ventura County Resilient Coastal Adaptation Project Sea Level Rise Vulnerability Assessment.					•				
Ventura County Climate Change and Health Profile Report	0	0			0	0		0	
Ventura County Multi-Hazard Mitigation Plan	•		•						

Natural and Managed Resources

Assets Examined in County	County							
Assets Examined in County Vulnerability Assessments	Imperial	Los Angeles	Orange	Riverside	San Bernardino	Ventura		
Natural and Managed Resources								
Agriculture								
Biodiversity and Habitat								
Forest and Rangeland								
Oceans and Coastal Resources	na			na	na			
Surface Water (lakes, streams)								

32

Land Use and Community Development

SCAG

Assets Examined in County	County							
Vulnerability Assessments	Imperial	Los Angeles	Orange	Riverside	San Bernardino	Ventura		
Land Use and Community Development				AU.	hr di			
Commercial								
Industrial								
Residential								
Hospitals and Emergency Services								
Public Housing								
Public Assets and Institutions								
Private Institutions								
Military Institutions								
Parks and Recreation; Urban Forests								
Historic and Cultural Assets								

SCA

Infrastructure

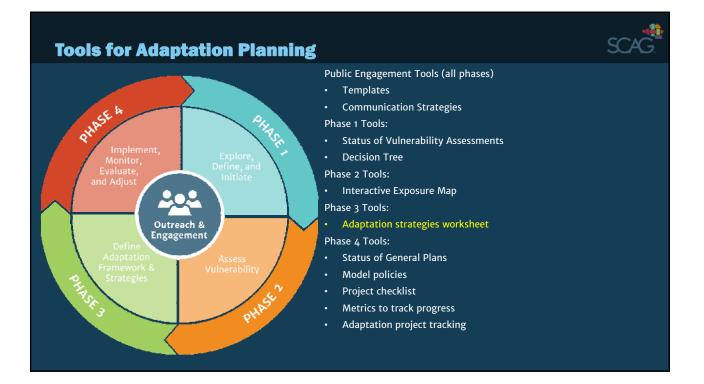
Assets Examined in County			Со	unty		
Vulnerability Assessments	Imperial	Los Angeles	Orange	Riverside	San Bernardino	Ventura
Infrastructure		4 (4) N (4)				
Roads and Highways						
Public Transit - bus and light rail						
Heavy Rail						
Ports and Marinas				na	na	
Airports						
Communication						
Energy						
Stormwater Management						
Flood and Erosion Management						
Water Supply						
Wastewater Treatment						
Solid and Hazardous Waste Management						
na = not applicable						

Public Health, Socioeconomics, & Equity

Assets Examined in County	County							
Vulnerability Assessments	Imperial	Los Angeles	Orange	Riverside	San Bernardino	Ventura		
Public Health, Socioeconomics and Equity		k ir		112				
Public Health								
Disavantaged Groups								
Tribal and indigenous Communities								
Food Security (covered in health profile reports)								

Decision Tree Tool

	A	GENCY INFO	D		
Select the County you represent	San_Bernardin	10			
Select City you represent	Needles				
Total	Population		Employment	Households	Housing Units
County		2,258,662	828,692	700,095	2,587,070
City		7,828	3,264	3,151	10,959
Wildfire	Population		Employment	Households	Housing Units
County		494,946	176,782	155,171	573,404
City		1	0	0	1
Sea Level Rise	Population		Employment	Households	Housing Units
County		-	-	-	-
City		-	-	-	-
Flood	Population		Employment	Households	Housing Units
County		68,514	24,007	21,336	78,842
City		708	295	285	991
Extreme Heat	Population		Employment	Households	Housing Units
County		88,885	20,662	33,587	124,116
City		7,828	3,264	3,151	10,959


	S	X
PROJECT IN	FO	l
Questions	Project	
Which hazard category do you want to look for projects in?	Extreme Heat	
If selected "Other", please mention hazard name		
Asset protected in said project	Vulnerable_Populations	
If selected "Other", please mention protected asset name you are interested in		
Desired strategy	Improve access to air conditioning and cooling centers by vulnerable populations	-
If selected "Other", please		
mention your desired strategem		
Action item interested in	Encourage partnerships between local emergency responders and local health departments to identify and reach vulnerable populations in need of access to cooling centers or personal cooling resources	
If selected "Other", please mention your desired action item		

Tools for Adaptation Planning Public Engagement Tools (all phases) Templates PHASE 4 Communication Strategies PHASE Phase 1 Tools: Status of Vulnerability Assessments Implement, Monitor, Evaluate, and Adjust Decision Tree Phase 2 Tools: • Interactive Exposure Map Phase 3 Tools: Outreach & Adaptation strategies worksheet Engagement Phase 4 Tools: • Status of General Plans Model policies PHASE 2 Project checklist Metrics to track progress Adaptation project tracking

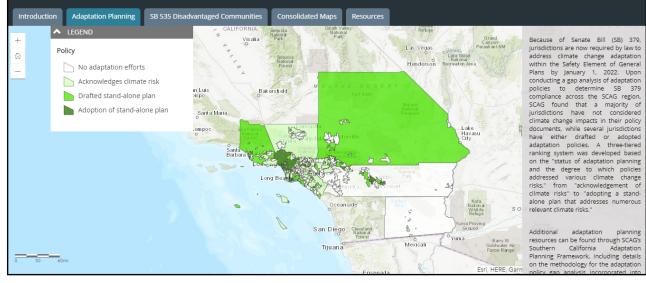
Interactive Mapping Tools

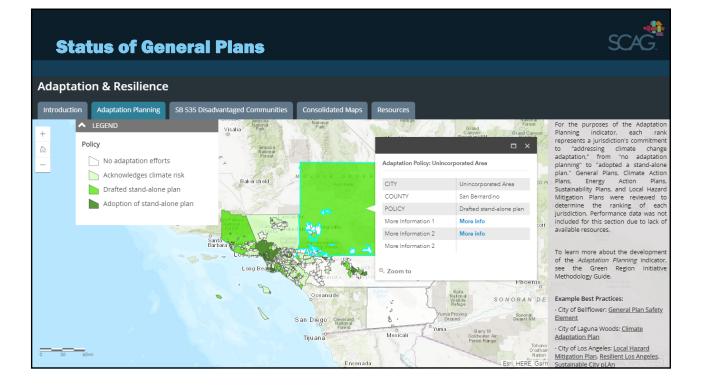
- Under development using ArcGIS Online and StoryMaps tools
- One-stop shop for exploring all risk hazard layers
- Includes demographics (pop, HHs, emp) as dot density layers
 - Able to search and query overlays in your jurisdiction by risk layer
 - Wildfire Risk, Sea Level Rise, Inland Flooding, Extreme Heat Health Events
 - Select by jurisdiction or by spatial area user-determined
 - Summarize vulnerability data to input to other tools

Adaptation Actions

- Excel Spreadsheet
- Over 275 actions
- Filter by climate change hazard type (e.g., extreme heat, air quality)
- Filter by asset type (e.g., vulnerable populations, public health)
- Strategies and actions can be incorporated into Climate Adaptation Plans or as implementation programs for the General Plan

			ies_Actions_Draft_V1 + Excel	21) m
a first taxes	rout Formulas Data I	Review View 📿 Tell me what you want to d	and the second	Reo
Clipboard 5			Formatting * Table * Styles * * *	Im * A T P Sort & Find & Filter * Select * Editing
al 5 · C? · abe				
SECURITY WARNING Automatic	update of links has been disab	eled Enable Content		
A128 · × ~	fr Multiple Hazards			
A A	8	c	D	
Climate Change Hazard	Asset	Strategy	- Action	
Air Quality and Human Health Hazards	Vulnerable Populations	Design and utilize green infrastructure to provide adaptation benefits	Expand urban forest cover in areas most vulnerable to poor air quality	
1 Hozords				
Air Quality and Human Health Hazards	Public Health	Establish local early warning systems	Establish an early warning system for hazardous air quality	
2 Air Quality and Human Health	Public Health Public Health	Establish local early warning systems Expand public outreach and education to policymakers, businesses, and the general public	Establish an early warning system for hazardous air quality Create a plan for disseminating public information about new or more prevalent ve resulting from climate change.	ctor borne diseases
2 Air Quality and Human Health Hazards Air Quality and Human Health Hazards		Expand public outreach and education to	Create a plan for disseminating public information about new or more prevalent ve	r. Expand outreach
2 Air Qualify and Human Health Hazards 4 Air Qualify and Human Health Hazards 5 Air Qualify and Human Health Hazards 4 Air Qualify and Human Health Hazards 4 Air Qualify and Human Health Hazards	Public Health	Expand public outreach and education to policymakers, businesses, and the general public identify and protect communities vulnerable to	Create a plan for disseminating public information about new or more prevalent ve resulting from climate change. Identify and remedy poor drapped areas to reduce disease risk from stagnant wate programs to dvotate communities about potential increases in vector-borne diseas	rr. Expand outreach les from stagnant
2 Air Quality and Human Health Hazards 3 Air Quality and Human Health Hazards 4 Air Quality and Human Health Hazards 5 Air Quality and Human Health Hazards Air Quality and Human Health	Public Health Public Health	Expand public outreach and education to policymakers, businesses, and the general public identify and protect communities vulnerable to climate effects Identify and protect communities vulnerable to	Create a plan for disseminating public information about new or more prevalent ve resulting from climate change. Identify and remedy poor drainage areas to reduce disease risk from stagnant wate programs to evaluate communities about potential increases in vector-borne diseas water. Provide access to air fifters, realience hubs with filtered air, or air masks during will	r. Expand outreach les from stagnant ffire events, or days





Status of General Plans

SCAG.

Adaptation & Resilience

Status of General PlansCities and Counties that specifically address public health
considerations:• Total cities/counties with adopted or draft policies or strategies: 30• Cities that address public health related aspects of climate change:• Extreme Heat: 5 cities• Vector borne disease: 1 city• Air quality: 4 cities• Public health collaboration: 6 cities• Equity and environmental justice: 4 cities

Model Policies for Local Coastal Programs and General Plans

Model policies organized by general plan element and climate hazard type

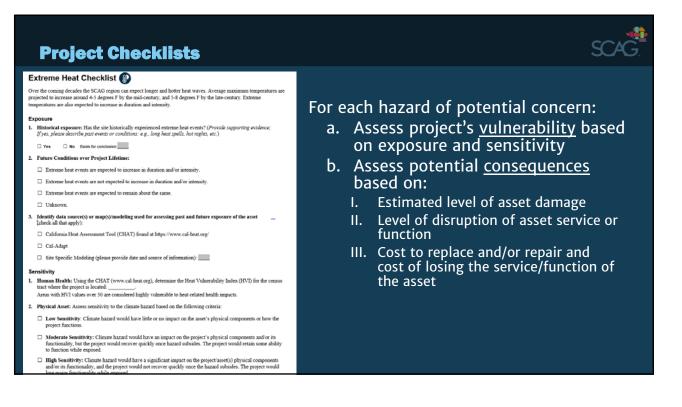
- Elements:
 - Environmental Justice
 - Circulation
 - Land Use
 - Safety
- Hazards:
 - Multiple hazards
 - Extreme heat
 - Air quality and human health
 - And other climaterelated hazards

LAND USE ELEMENT

Extreme Heat

- Shade for Livestock. Amend local zoning ordinances to allow ancillary shade structures for vulnerable livestock populations. (Agriculture)
- Green or White Roofs. Require green or white roofs, depending upon sub-regional locations and water requirements, to reduce solar gain and heat island effects. (Buildings and Facilities)
 Landscaping to Reduce Heat. Develop landscaping standards and guidelines to encourage or require
- Landscaping to Reduce Heat. Develop landscaping standards and guidelines to encourage or require
 native-cultivar drought tolerant landscaping with enough coverage to provide shade and reduce heat
 absorption. (Public Health, Socioeconomics, and Equity)
- Building Design Features. Modify the community's zoning ordinance and/or design guidelines to allow
 and encourage awnings, canopies, arcades and/or colonnades that can encroach into the public
 sidewalk area to create shade for pedestrians. (Transportation)

Project Checklists


TABLE 1 PROJECT SCREENING THRESHOLDS FOR CLIMATE HAZARDS (FOR PROJECT PROPONENT TO COMPLETE)									
Climate Hazard	Screening Threshold Questions (if the answer to any of the following questions is "Yes", then the checklist for that hazard must be completed	Links or Sources of Information							
Drought	Would project consume water resources in its construction or operation and if so, are the water sources supplying the project at risk from drought? Yes No	Urban Water Management Plan applicable to the project's location							
Extreme Heat	Is the area where your project is located expected to experience more than 30 heat heath days per year over the project lifetime? Yes No	Maps based on California Heat Assessment Tool (CHAT): https://www.cal-heat.org/							
Inland Flooding	Is the project located in the 100-year or larger FEMA Bootplain, otherwise known as the 1% annual chance flood? Yes No Using Cal-Adapt, will the project watershed be subject to an increase of externe precipitation events? Yes No	FEMA Flood Maps: https://msc.fema.gov/portal/ho me							
Landslides	Is the project located in area of moderate or high susceptibility to landslide hazards? Yes No	USGS landslide susceptibility map: https://maps.conservation.ca.gov/cg s/tsi/							
Sea Level Rise/ Coastal Flooding	Is the project in a SLR vulnerability zone, or will any infrastructure or resources that the project relies upon be affected by SLR (e.g., beaches, groundwater)? Yes No	Use detailed local SLR maps, if available. Alternatively, use Our Coast Our Future tool: http://data.pointblue.org/apps/ocof/c ms/index.php?page=flood-map							
Wildfire	Is the project located in a high or very high fire hazard zone? Yes No	CalFIRE Maps - https://osfm.fire.ca.gov/divisions/wil dfre-planning-engineering/wildand- hazards-building-codes/fire-hazard- severily-zones-maps/							

Template for incorporating climate change adaptation elements into local project approval process:

- · Residential and commercial development
- Infrastructure projects

Two-step process:

- 1. Suggested screening thresholds for 6 hazards
- 2. Detailed checklist for each hazard

Project Checklists

From the folk increase adapt	ptation Measures: www.giistof adaptation measures, identify those that the project will incorporate to wire capacity to extreme heat. For all "no" answers provide additional explanatory ncluding whether the measure is not applicable to the project.
Robustness	Would project expand and maintain the urban tree canopy? (e.g., by increasing tree cover for large parking lots) Yes No
	2. Would the project expand the use of cool roofs and reflective building materials? Yes No
	3. Would the project use alternative vegetative solutions to alleviate urban heat island: for example, green walls and green roots where trees are not possible?
	Yes No 4. Would the project expand the use of cool, porous, high-reflectivity pavement or sustainable materials in pavements? Yes No Yes No
Resilience	5. Would the project use alternatives to grid-powered air conditioners for cooling, such as propane air conditioners, fans and cold water systems? Yes No
Adaptability	Would the project limit or remove impervious surfaces to help combat urban heat Island effects? Yee D No No Toos the project expand access to cooling centers for vulnerable populations to use during heat health events?
	Yes No
Redundancy	B. Would the project have at least 2 routes for emergency vehicle access to allow for emergency services ¹ /arts responders to access people at project site in the event of an emergency?

- c. Assess project's <u>adaptive capacity</u>, based on the adaptation measures incorporated into its design
 - i. Suggested measures: customize to local needs
 - ii. Utilize the Strategy Matrix

Project Tracking Tool

		AGENCY INFO				
Select the County you represent	San_Bernardino			Population	Employment	Households
Do you represent a County Agency, a City			County	2.258.662	828.692	700.095
Agency or Other Agency?	City		county	2,230,002	020,052	700,055
If selected Other Agency, please select			City	7.828	3,264	3,151
Agency Name from the list			city	7,020	3,204	5,151
If selected "Other", please mention the						
name of the agency you represent						
Select City you represent	Needles					
	PROJECT INFO					
Metrics	Project 1	Project 2	Project 3	Project 4	Project 5	Project 6
Climate Change Hazard combating through						
existing, planned or proposed projects (can	Extreme_Heat	Inland_Flood	Wildfire		Severe_Storms	
mention as many as you know)				Extreme_Heat	_Or_Wind	
Affected Population	7,828	708	1	7,828	Unknown	Unknown
Affected Employment	3,264	295	0	3,264	Unknown	Unknown
Affected Households	3,151	285	0	3,151	Unknown	Unknown
If selected "Other", please mention hazard						
name						
Asset protected in said project	Public Transit	Multiple Assets	Public Health	blic Health Vulnerable Pop Buildings and Facilities		cilities
If selected "Other", please mention						
protected asset name						
Scale of project (SED protected) by this						
effort (in % ??)	0.05	0.35	0.9	0.2		
Protected Population	391	248	1	1,566	Unknown	Unknown
Protected Employment	163	103	0	653	Unknown	Unknown
Protected Households	158	100	0	630	Unknown	Unknown
Additional Description						
Stage of the project	Construction	Proposed	Planning	Engineering/De	No Action	
Timeline						
Cost						
Funding	Partially funded	Unfunded	Partially funded	Fully funded	Unfunded	
Contact Info for PM						
-						

Climate Change and Adaptation Metrics

Two New Resources 1) Metrics for Local Jurisdictions

2) Metrics for Metropolitan Planning Organizations

Types of Metrics

- Climate Change Indicators (e.g., mean monthly temperature)
- Vulnerability Metrics
 - Exposure (e.g., # of tribal community population in area of identified risk)
 - Sensitivity (e.g., % of population that is 65 years or older)
 - Adaptive Capacity (e.g., # of acute care hospital beds per 1,000 residents),
- Climate Adaptation Metrics
 - **Process-based metrics** (e.g., # of adaptation projects added to capital improvement plans)
 - Outcome-based metrics (e.g., % increase in tree canopy)

Metrics to Track Adaptation Progress

Goal 1: Resilient Communities. All people and communities respond to changing average conditions, shocks, and stresses resulting from climate change in a manner that minimizes risks to public health, safety, and economic disruption and maximizes equity and protection of the most vulnerable.

Address underlying health inequities for all residents, including those related to hazards such as localized air pollution, extreme heat, and flooding; access to basic health services; and access to affordable and nutritious foods.

Deepen and focus engagement with disproportionally vulnerable communities. # of grocery stores with fresh produce per 1000 residents

% reduction in food desert area

% of people aware of potential risks (based on targeted surveys)

- Measure your progress towards your climate adaptation goals and objectives
- Quantifiable
- Resource: Menu of metrics to choose from

Contact the project team

SCAG

Kimberly Clark clark@scag.ca.gov

Adaptation Team adaptation@scag.ca.gov

Cambridge Systematics

David Von Stroh dvonstroh@camsys.com

ESA

Jeff Caton JCaton@esassoc.com

Here LA

Amber Hawkes ahawkes@here.la

www.scag.ca.gov