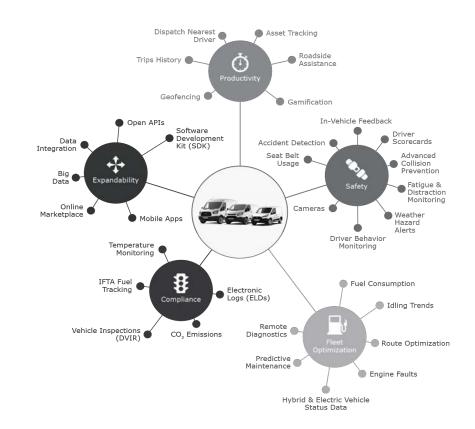


Contextualized Freight & Mobility Insights

Jean Pilon-Bignell - VP of BD, Gov & ITS

Presentation January 2022

Agenda


- Introducing Geotab ITS
- Proxying the Commercial Vehicle Population
- NIITEC Case Study
- IDOT Case Study
- Modelling the Freight & Mobility Population
- Q&A

Get the Most out of CV Data

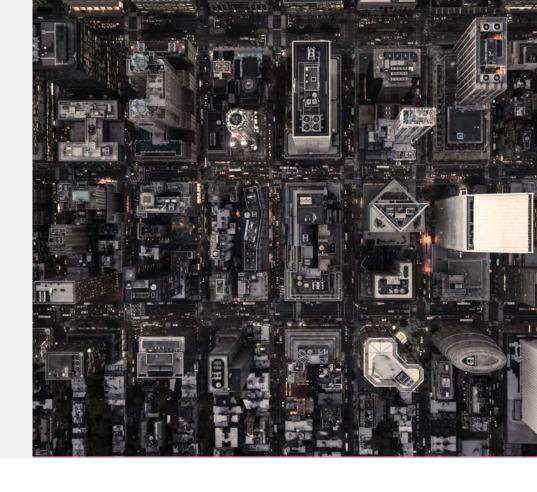
Connected-vehicles are an amazing source of transportation data:

- Vehicle classification
- **Engine configuration**
- Driving behavior
- Routing
- Travel speed and time
- Trip purpose
- Trip duration
- More

The **Where** and the **When** of Freight

What if you could sample millions of vehicles worth of data from a single platform?

- 2.6M connected commercial fleet vehicles
- 25M trips per day
- 50B raw data records per day



The What and the Why of Freight

What if you could label journeys to understand **trip purpose**?

- People vs goods movement
- Vehicle classifications
- Trip vocations
- Commercial industry segmentation
- True origin and destination

Introducing Altitude

A **contextualized** transportation analytics platform

Origin/Destination

Plan smarter from point A to Z with a comprehensive picture of true origins and destinations

Intersections

Improve signal timing and progression for better traffic flow

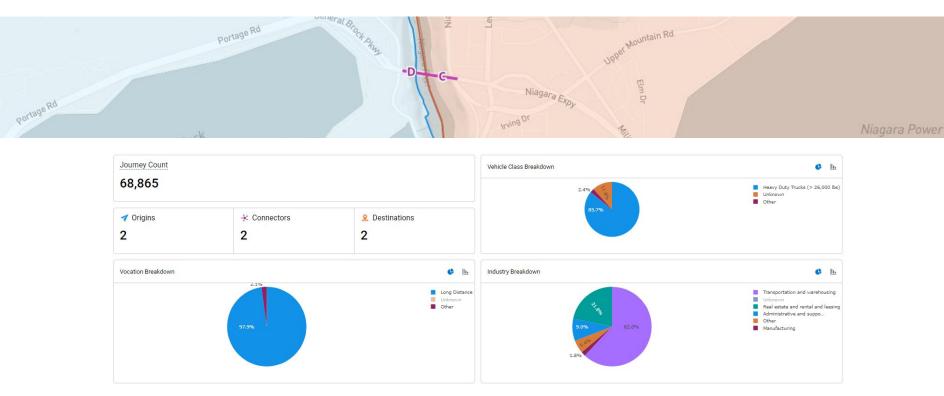
Roads

Create smarter roadways with reduced travel times and bottlenecks.

Can sample fleet data be used as a proxy for the **freight population**?

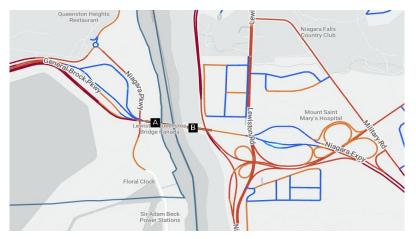
NITTEC Case Study - Objectives

Objective: could Geotab sample freight data be used to infer temporal wait times for the entire freight population at 4 critical Niagara region border crossings?

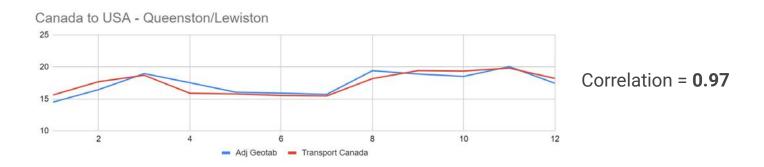

Labels: freight border wait times were provided from Transport Canada

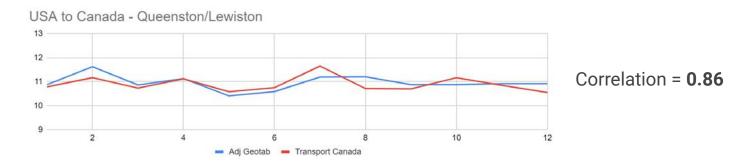
Study Area:

- Fort Erie
- Queenston
- Sarnia
- Windsor


NITTEC Case Study - Methodology

NITTEC Case Study - Methodology

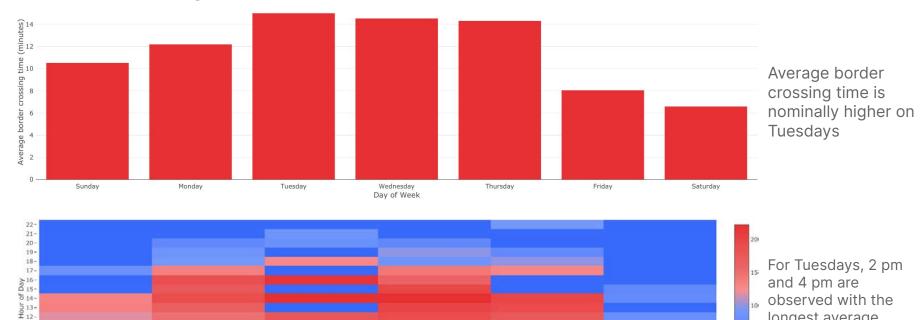




Free-flow Speed	Free-flow Travel Time	Speed Limit (avg)	Speed Limit Range	
31.0 mph	00:00:32	15.0 mph	15 mph - 15 mph	
Measurements (average o	of multiple segments)			
Travel Speed About				
Travel Speed (avg)	% of Free-flow Travel Speed	% of Speed Limit	% of Trips Over Speed Limit	Pace
13.1 mph	42%	88%	1%	20 mph - 30 mph
View details				
Spot Speed About				
Spot Speed About Spot Speed (avg)	% of Free-flow Spot Speed	% of Speed Limit	% of Trips Over Speed Limit	
an it was a look of	% of Free-flow Spot Speed 82%	% of Speed Limit	% of Trips Over Speed Limit 96%	
Spot Speed (avg)				
Spot Speed (avg) 25.7 mph	82%			
Spot Speed (avg) 25.7 mph View details	82%			

NITTEC Case Study - Results

NITTEC Case Study - Inferring the Population


Canada to US freight wait times

Monday

Tuesday

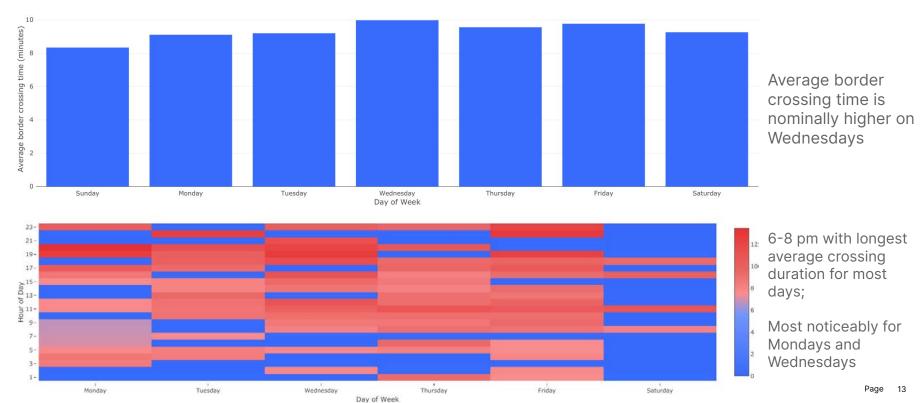
11-

Sunday

Wednesday

Day of Week

Thursday


Friday

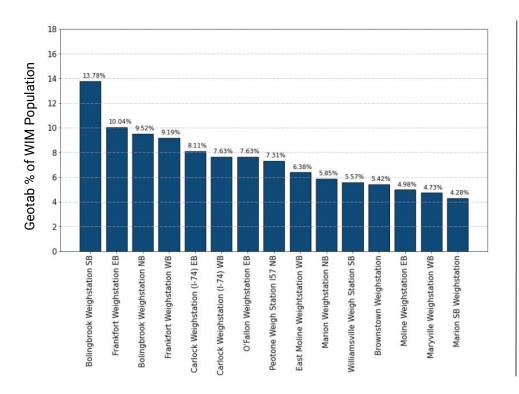
longest average

crossing duration

NITTEC Case Study - Inferring the Population

US to Canada freight wait times

IDOT Case Study - Objectives


Objectives: could Geotab sample freight data be used to infer temporal volume variances in the freight population?

Labels: mainline Weight in Motion (WIM) sensors across the State of Illinois

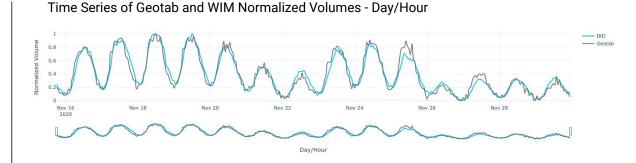
Study Area: 15 mainline WIM sensors across the State

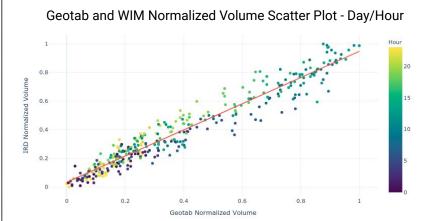
IDOT Case Study - Results

Geotab shows **between 4% and 14% freight penetration** at the various WIM locations

IDOT Case Study - Results

Weigh Station	Daily (All Days)	Hourly (All Days)	Daily (Weekday)	Hourly (Weekday)
Bolingbrook Weighstation NB	95.890000	83.910000	92.350000	85.320000
Bolingbrook Weighstation SB	98.910000	96.450000	97.660000	96.730000
Brownstown Weighstation	97.850000	95.460000	98.710000	93.070000
Carlock Weighstation (I-74) EB	96.900000	93.330000	95.370000	95.060000
Carlock Weighstation (I-74) WB	96.920000	86.580000	93.510000	86.420000
East Moline Weightstation WB	99.360000	96.370000	98.700000	93.630000
Frankfort Weighstation EB	98.610000	97.600000	98.200000	97.520000
Frankfort Weighstation WB	93.800000	95.810000	88.750000	96.210000
Marion SB Weighstation	94.990000	85.990000	93.910000	82.840000
Marion Weighstation NB	99.150000	81.350000	99.170000	76.710000
Maryville Weighstation WB	98.230000	96.740000	97.860000	96.300000
Moline Weighstation EB	92.880000	92.490000	84.030000	91.610000
O'Fallon Weighstation EB	68.720000	92.960000	48.900000	90.650000
Peotone Weigh Station I57 NB	98.410000	96.480000	97.480000	97.410000
Williamsville Weigh Station SB	92.100000	89.170000	84.290000	86.770000


Overall volume correlation is excellent, varying between **96.6%** and **98.5%**



IDOT Case Study - Inferring the Population

By applying geospatial expansion factors, Geotab sample freight data is a statistically significant representation of temporal volume fluctuations

Correlation at **96.6**% when compared to aggregated hourly WIM volumes

Conclusion

Can sample fleet data be used as a proxy for the freight population?

- Yes... in some cases
- Geotab freight sample data seems to be correlated with temporal and spatial label data
- More label data is needed!
- Geotab is working with SCAG and Caltrans to try and replicate this work and create a Freight & Mobility data set that is a statistically significant representative of the entire trucking population in California

Questions?

