Building the LA County MATSim Model for the Analysis of Shared Mobility Modes

Caroline Rodier, ITS, UC Davis Huajun Chai, ITS, UC Davis Ihab Kaddoura, TU Berlin

Outline

- 1) Introduction (Caroline)
- 2) MATSim overview (lhab)
- 3) Building the LA model (Huajun/Ihab)
- 4) How to access and run the model yourself! (Ihab/Huajun)

MATSim Overview

MATSim = Multi-Agent Transport Simulation

Key features:

- Agent-based: Simulates vehicle and individuals in household context
- **Dynamic**: Entire day, traffic congestion, attributes of drivers and passengers
- Activity-based: Travel demand based on individual activity patterns
- Multi-modal: Cars, public transit, bicycles, demand responsive transit, ...
- Allows for large-scale simulations (city, region)
- Modular approach: Several extensions (taxis, MaaS, congestion pricing, ...)
- Open-source (https://github.com/matsim-org) + Active community

MATSim Community

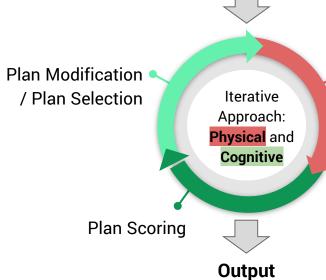
- Active community: regular developer and user meetings
- (Main) developers: TU Berlin, ETH Zürich,
 Senozon, ... and several others
- Software developed, maintained and extended for more than 10 years
- Several applications world wide

For more information, see www.matsim.org

- MATSim Book
- Tutorials
- User Guide
- Q&A
- Community pages
- ..

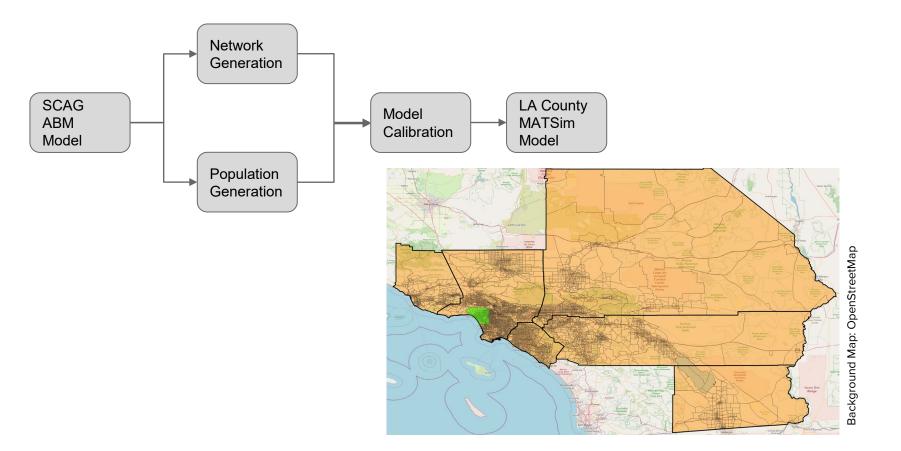
MATSim: How it works

Network, Public transit schedule, ...

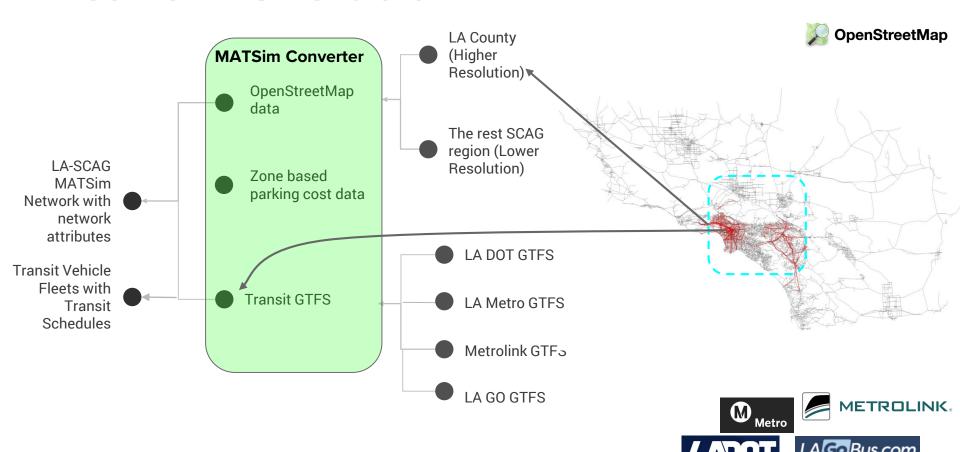

Daily plans, person attributes, ...

Input

Home (dep: 06:43)
trip (car)
Work (dep: 16:04)
trip (car)
Shopping (dep:
18:04)
trip (car)
Home
Home (dep: 12:42)

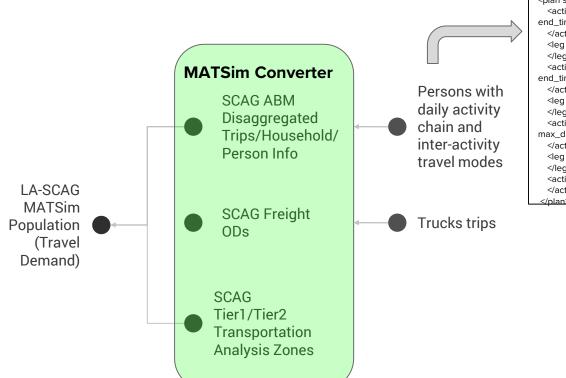

trip (bike) **Shopping** (dep: 14:05)

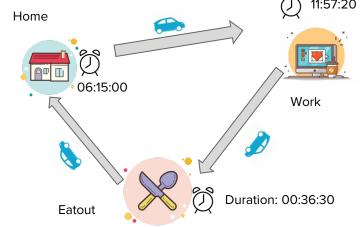
trip (bike) **Home**



Build the LA County MATSim model

Network Gneration


Road Network


Public Transit Network

Population Activity Generation


```
<plan selected="yes">
  <activity type="home_36600" x="219308.77924934198" y="-492202.6918447277"
end time="06:15:00" >
  </activity>
 <leq mode="car" trav_time="00:14:01">
  <activity type="work_34200" x="217258.84632072653" y="-481509.10106846545"
end time="11:57:20" >
  </activity>
 <leq mode="car" trav_time="00:13:50">
  <activity type="eatout_2400" x="216306.4814485427" y="-479166.1510645319"
max dur="00:36:30" >
  </activity>
  <leq mode="car" trav_time="00:15:56">
  <activity type="home_36600" x="219308.77924934198" y="-492202.6918447277" >
  </activity>
</nlan>
```


Person Attributes

```
<person id="10000099">
        <attributes>
                <attribute name="ESR" class="java.lang.String">0</attribute>
                <attribute name="age" class="java.lang.String">3</attribute>
                <attribute name="eduatt" class="java.lang.String">1</attribute>
                <attribute name="gender" class="java.lang.String">male</attribute>
                <attribute name="hhinc" class="java.lang.String">22700</attribute>
                <attribute name="hhnumautos" class="java.lang.String">1</attribute>
                <attribute name="hhsize" class="java.lang.String">3</attribute>
                <attribute name="householdId" class="java.lang.String">3247023</attribute>
                <attribute name="htype" class="java.lang.String">Multiple</attribute>
                <attribute name="marginalUtilityOfMoney" class="java.lang.Double">4.673641850220264</attribute>
                <attribute name="race" class="java.lang.String">NHAS</attribute>
                <attribute name="schq" class="java.lang.String">0</attribute>
                <attribute name="subpopulation" class="java.lang.String">person</attribute>
                <attribute name="ten" class="java.lang.String">3</attribute>
                <attribute name="wkind20" class="java.lang.String">0</attribute>
                <attribute name="wkocc24" class="java.lang.String">0</attribute>
                <attribute name="worker" class="java.lang.String">unemployed</attribute>
        </attributes>
```

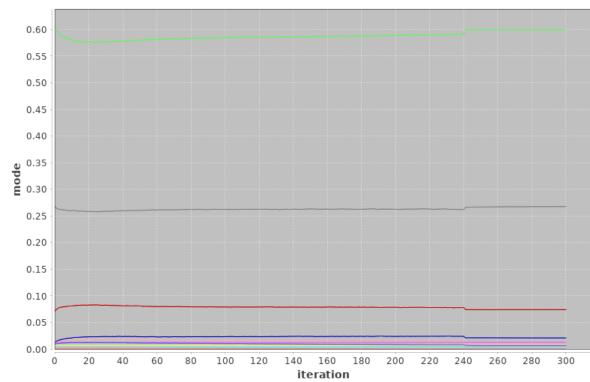
- Taken from the person / household data in the SCAG abm
- For person-specific policy investigations
- For income-dependent utility parameters
 - income above average → marginal utility of money < 1.0
 - income = average → marginal utility of money = 1.0 (1 \$ = 1 utility unit)
 - income below average → marginal utility of money > 1.0

The LA County MATSim: Statistics

1. Model overview

	# of household	# of agents	# of trips
Original SCAG ABM Model	6,180,962	18,682,684	71,126,268
1%	183,307	186,637	708,219
5%	857,668	934,398	3,552,392
10%	1,582,433	1,867,724	7,104,799
25%	3,191,734	4,669,729	17,770,662
100%	6,180,962	18,682,684	71,126,268

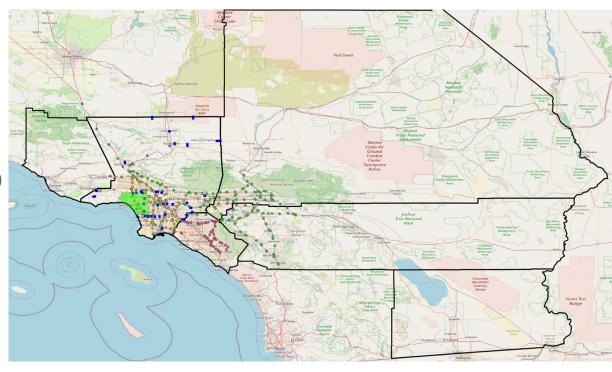
2. Supported Modes


- Base case: Car, Public
 Transit, Ride, Bike, Freight,
 Walk, Ride_taxi,
 Ride_schoolbus
- Scenario case: Ride-Hailing
 - Single and multi passenger
 - Automated and Nonautomated
 - Fares

Model Calibration: Mode Share

- Transport users' choice dimensions:

- Route choice
- Mode choice
- Departure time choice
- Adjusted parameters:
 - Alternative-specific constants
 - Marginal disutility of traveling
 - Daily utility constants


Mode Statistics

Model calibration: Link volumes

- Link volumes at certain count stations are calibrated towards "ground truth" values.
- We use several volume count data sources, including
 - SCAG screenline data (Blue dots)
 - Mainly on local roads
 - Total stations: 72
 - PEMS freeway count station data (The rest dots)
 - Mainly on freeways
 - Total stations: 445

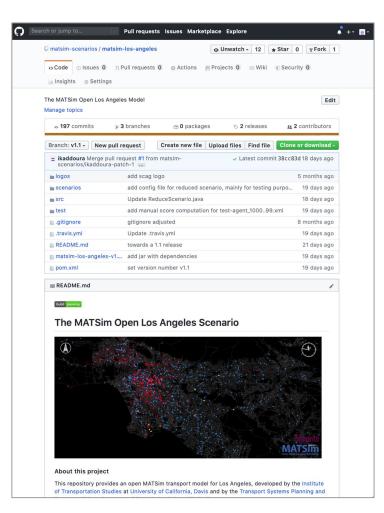
Background Map: OpenStreetMap

Visualization of Simulated Activities

blue = home
red = work
yellow = leisure/shopping
green = education

Visualization of Simulated Vehicles

Visualization of Public Transit Vehicles


Run the model yourself!

https://github.com/matsim-scenarios/matsim-los-angeles

- 1) Download the project
- Execute the runnable jar file (double click or "java jar matsim-los-angeles-v1.1-jar-with-dependencies.jar")
- 3) GUI: Choose a configuration file from ./scenarios/los-angeles-v1.1/input/... and "Start MATSim"

Or clone the project and run the JAVA run class from your IDE.

Outlook

- Multi-modal policy investigations + detailed analysis (person-specific, spatial and temporal high resolution)
- Autonomous ride-hailing services in the West Side Cities Area (MATSim extensions: dvrp, av, drt)
- Road pricing concepts (MATSim extensions: roadPricing, decongestion)
- Submitted SGC proposal to add one-way carsharing with BlueLA user data to explore concepts for planned expansion
- Submitted UC SB 1 proposal to use LA County MATSIM model to simulate contact human frequency, duration, and intensity patterns for a COVID-19 virus infection dynamic model with USC's School of Medicine

Thank you!

Acknowledgements

We are grateful to the Southern California Association of Governments (http://www.scag.ca.gov/) for supporting this model developing effort with data and staff time. We are also grateful to the California Department of Transportation (https://dot.ca.gov) for funding this research through their sustainable planning grant programs.