Macro-Level Models for Quantitative Safety Planning

In Partnership with the Federal Highway Administration

Modeling Task Force Meeting July 28, 2021

www.scag.ca.gov

Background: Project Origins

- SCAG played a big role in NCHRP 17-81 agency outreach.
- Outreach helped inform the form and function of planning-level crash prediction models (CPMs).
- FHWA technical assistance to help implement the NCHRP 17-81 research at SCAG.

Background: Existing HSM Crash Prediction Models (CPMs)

- Fundamental analysis unit of the HSM processes, procedures, and methods is a "site" (e.g., a specific segment, intersection, ramp, or ramp terminal).
- An HSM user can combine analyses of multiple sites into a facility-level analysis (e.g., freeway facility with multiple interchanges).

Background: Macro-Level CPMs & NCHRP 17-81

- Predict average crash frequency, by crash type and severity, for a defined area, such as a census tract, traffic analysis zone, or county.
- Predictor variables for macro-level models characterize the broader area for which the models apply:
 - Area Type Classifications and Geography
 - o Socioeconomics
 - o Land Use
 - Presence/type/extent of Multimodal Transportation Infrastructure
- Intended to supplement the transportation planning process, not replace it (or create a whole new dimension).

2,400 new residents 1,600 new employees 10% increase in highway traffic 8-20% estimated increase in KAB multi-vehicle crashes

Background: Potential Role of Macro-Level Crash Prediction Models

- Setting safety targets or performance measures (e.g., estimating #s of crashes in the future given population growth, land use changes, economy, & other related factors).
- Estimating how much investment in safety may be needed to meet future safety targets given growth and other changes.
- Assessing the safety impacts of largescale projects.
- Comparing alternative growth scenarios (e.g., scenario planning).

Background: Project Overview

- FHWA Safety Data and Analysis Technical Assistance Program.
- Develop series of predictive models for safety planning and target setting.
- Safety Target Setting Models (3, county-level)
 - o Fatalities
 - Serious injuries
 - Non-motorized fatalities and serious injuries
- Community Models
 - Predict traffic crashes at TAZ-level
 - Contributing to federal effort to produce macro-level crash prediction models & guidance for AASHTO Highway Safety Manual

Safety Target Setting Models

Background: Annual Safety Target Setting

- MAP-21 requirement
- Establish annual targets for:
 - Number of fatalities
 - \odot Rate of fatalities per 100 million VMT
 - Number of serious injuries
 - \odot Rate of serious injuries per 100 million VMT
 - Number of active transportation fatalities & serious injuries

Safety Target Setting Models - Data

- Natural events
 - Average precipitation
 - Fire coverage
- Vehicle miles traveled annual estimates
 - o By county
 - By functional classification (urban areas only)
- Demographic/Socioeconomic
 - o Population
 - o Employment
 - o Age
 - Household income
 - o Unemployment rate
 - o Commuters by mode

- Project funding
 - Local Highway Safety
 Improvement Program (HSIP)
 - State Highway Operation and Protection Program (SHOPP)
- Behavioral indicators
 - Alcohol consumption statewide by category

Safety Target Setting Models - Process

SCAG

- Negative binomial regression.
 - County-Month as the unit of observation.
 - Common approach to safety modeling lends itself to modeling overdispersed count outcomes.
 - Lower threshold of statistical significance.
 - Avoid unobserved variable bias.
- Preliminary investigation of project-related effects.
 - Difficult to assess the influence of SHOPP funded projects; some potential for HSIP projects as an indicator.
 - Better data with respect to project location and construction dates.
 - Still weak relative to other variables.
- Training and testing datasets used for model validation.
 - Model trained with 70% of data and tested on the remaining 30%.
 - Cumulative residual (CURE) plots used to assess model fit.

Safety Target Setting Models - Process

Testing Dataset

Full Dataset

Safety Target Setting Models - Process

Data Input	Total Fatality Model	Total Serious Injury Model	Total Non- Motorized Fatality and Serious Injury Model
Annual VMT, Natural logarithm (LN)	\checkmark	\checkmark	
Proportion of VMT on urban interstates		\checkmark	\checkmark
Proportion of VMT on urban major collectors	\checkmark		
Proportion of VMT on urban local roads			\checkmark
Proportion of population aged 65+		\checkmark	
Proportion of population aged 15- 24*	\checkmark	·	
Proportion of population aged 18- 24*		\sim	
Median household income (2011\$; divided by 1,000)	\checkmark		\checkmark
Total population			\checkmark
Total employment			\checkmark
Proportion of the population that commutes by transit, bicycle, or walks	\checkmark		
Unemployment rate (Not seasonally adjusted)	\checkmark		
Distilled spirit consumption per capita		\checkmark	\sim
Regular gas prices (2019\$)			\checkmark

Safety Target Setting Models - Results

- Highly intuitive results with strong connection to existing research.
- Identifies tangible safety indicators that could inform policy:
 - Traffic trends on facility types
 - Older and younger drivers
 - o Alcohol consumption
 - Changes in employment and population trends

 These are baseline projections –can be affected by changed inputs. Possible to develop "what-if" scenarios – What could we expect?

Community Models

Community Modeling - Data

- Data obtained and processed
 - o TAZ boundaries
 - Crash location, type, and severity
 VMT
 - Centerline mileage (including NHS)
 - \circ Total population
 - o Total employment
 - Median household income
 - \circ Urban area
 - Transit stops
 - \circ Intersections
 - Total commuting age population
 - Commute trips by mode

- Additional data
 - California Public Health Assessment Model
 - Disadvantaged Communities data

Community Modeling - Process

- Methods consistent with NCHRP 17-81.
 - Negative binomial regression.
 - Boundary data allocation avoid duplication.
 - Outcomes compared with expectations based on NCHRP 17-81.
- CURE plots used to assess model fit.

 No training/testing datasets NCHRP research provides confidence that inputs are relevant.
 - Developing SCAG-specific models better than calibrating NCHRP models to SCAG's data (Census block group vs. TAZ).

Severity	Bicycle/ Pedestrian	Total Crash
к		All VMT (LN) (+) Median Household Income (divided by 1000) (-) Total intersections (+)
КА	All VMT (LN) (+) Median Household Income (divided by 1000) (-) Total Population + Employment (LN) (+) Transit stop density (+) Total walk, bike, and transit commuting proportion (+) 1/(1+TOT_AREA) (+)	All VMT (LN) (+) Median Household Income (divided by 1000) (-) Total intersections (+) 1/(1+TOT_AREA) (-)
КАВС		All VMT (LN) (+) Median Household Income (divided by 1000) (-) Total intersections (+) 1/(1+TOT_AREA) (+)
КАВСО	All VMT (LN) (+) Median Household Income (divided by 1000) (-) Total Population + Employment (LN) (+) Transit stop density (+) Total walk, bike, and transit commuting proportion (+) 1/(1+TOT_AREA) (+)	All VMT (LN) (+) Median Household Income (divided by 1000) (-) Total intersections (+) 1/(1+TOT_AREA) (+)

Community Modeling - Results

 Strong results highly consistent with the recent NCHRP research.

 Good model fit and predictive performance – limited over- and underestimation while not overfitting the model.

 Inputs derived from SCAG's existing transportation models can support safety projections

 complement the current planning process.

Data Input	Total Crash K	Total Crash KA	Total Crash KABC	Pedestrian/ Bicycle KA	Pedestrian/ Bicycle KABC
Annual VMT (LN)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Median household income (2011\$; divided by 1,000)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Total population				\checkmark	\sim
Total employment		\checkmark	\checkmark	\checkmark	\checkmark
Commuting age population (aged 16 – 64)			\checkmark		
TAZ boundaries (Inverse Area Variable)	\checkmark	\checkmark		\checkmark	\checkmark
Total intersections	\checkmark	\checkmark			
Total centerline mileage			\checkmark		
Total NHS centerline mileage			\checkmark		
Transit stop locations by mode				\checkmark	\checkmark

Community Modeling – Spatial Visualization & Examples

SCAG.

- 3 Sample Scenarios: What if by 2025?
- Significant increase in predicted pedestrian crashes (Hesperia, CA).
 - Population to more than double.
 - Associated increase in traffic.
 - Household income expected to decline.

Community Modeling – Spatial Visualization & Examples

- 3 Sample Scenarios: What if by 2025?
- No major change in predicted pedestrian crashes (Hesperia, CA).
 - Population to slightly increase (~10%).
 - No change in employment.
 - Minor anticipated change in traffic volumes as a result.
 - Major increase in household income.

Community Modeling – Spatial Visualization & Examples

SCAG.

- 3 Sample Scenarios: What if by 2025?
- Decline in predicted fatal and serious injury crashes (Los Angeles, CA).
 - Very minor increase in population.
 - Notable decline in employment (greater than increase in population).
 - Potentially lower VMT.
 - Significant increase in median household income.

Future Considerations

- Models represent the baseline, business as usual path.
- Inputs can be adjusted or projected based on possible future outcomes.
- New information or changes to the transportation system can affect projections.
 - \odot Local road safety initiatives
 - o Increased investment and data-driven project programming
 - Speed management or implementation of a safe system approach
 - Improved vehicle safety features
 - o Vehicle and infrastructure connectivity and other operational improvements
 - Development trends and personal travel choices
- Models are most effective when relative trends are used.
- Community models are most effective in places where people (will) live, work, and play.

Next Steps

- Share draft Technical Assistance Memo with stakeholders.
- Meet to discuss final work.
- Finalize technical assistance memo.
- Stakeholder feedback.
- Future phase: visualization tool display scenario model results, interactive view of safety conditions within a community.

Questions? Comments? Courtney Aguirre | Aguirre@scag.ca.gov Yang Wang | wangy@scag.ca.gov Ian Hamilton | ihamilton@vhb.com

www.scag.ca.gov